Question Number 82568 by jagoll last updated on 22/Feb/20 $$\int\:\frac{\mathrm{1}}{\mathrm{tan}\:{x}+\mathrm{cot}\:{x}+\mathrm{sec}\:{x}+\mathrm{cosec}\:{x}}\:{dx}\:? \\ $$ Answered by jagoll last updated on 22/Feb/20 Terms of Service Privacy Policy Contact:…
Question Number 17033 by arnabpapu550@gmail.com last updated on 30/Jun/17 $$\int_{\frac{\Pi\:}{\mathrm{2}}} ^{\:\mathrm{0}} \:\frac{\mathrm{sinx}\:\mathrm{cosx}\:\mathrm{dx}}{\mathrm{2cos}^{\mathrm{2}} \mathrm{x}+\mathrm{3sin}^{\mathrm{2}} \mathrm{x}} \\ $$ Answered by sma3l2996 last updated on 30/Jun/17 $${t}={sinx}\Rightarrow{dt}={cosxdx} \\…
Question Number 82566 by jagoll last updated on 22/Feb/20 $$\int\:\sqrt{\frac{{x}+\mathrm{1}}{{x}}}\:{dx}\:=\:? \\ $$ Commented by mathmax by abdo last updated on 22/Feb/20 $${let}\:{I}=\int\sqrt{\frac{{x}+\mathrm{1}}{{x}}}{dx}\:{changement}\:\sqrt{\frac{{x}+\mathrm{1}}{{x}}}={t}\:{give}\:\frac{{x}+\mathrm{1}}{{x}}={t}^{\mathrm{2}} \:\Rightarrow \\ $$$${x}+\mathrm{1}\:={xt}^{\mathrm{2}}…
Question Number 17030 by tawa tawa last updated on 29/Jun/17 $$\int\:\mathrm{cot}^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{3}} \right)\:\mathrm{dx} \\ $$ Commented by Arnab Maiti last updated on 03/Jul/17 $$\mathrm{How}\:\mathrm{is}\:\mathrm{it}\:\mathrm{possible}\:?\:\int\mathrm{x}^{\mathrm{2}} \mathrm{cot}^{\mathrm{2}}…
Question Number 82564 by oyemi kemewari last updated on 22/Feb/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 82562 by TawaTawa last updated on 22/Feb/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 17027 by tawa tawa last updated on 29/Jun/17 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 82560 by niroj last updated on 22/Feb/20 $$\:\boldsymbol{\mathrm{U}}\mathrm{se}\:\mathrm{gamma}\:\mathrm{function}\:\mathrm{to}\:\mathrm{prove} \\ $$$$\:\:\left(\mathrm{i}\right)\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \boldsymbol{\mathrm{sin}}^{\mathrm{4}} \boldsymbol{\mathrm{x}}\:\mathrm{2}\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{dx}}\:=\:\frac{\mathrm{3}\boldsymbol{\pi}−\mathrm{4}}{\mathrm{192}}. \\ $$$$\:\:\left(\mathrm{ii}\right)\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{6}}} \:\boldsymbol{\mathrm{cos}}^{\mathrm{4}} \mathrm{3}\boldsymbol{\theta}\:\mathrm{sin}^{\mathrm{2}} \mathrm{6}\theta\:=\:\frac{\mathrm{5}\pi}{\mathrm{192}}. \\ $$ Answered by…
Question Number 82561 by jagoll last updated on 22/Feb/20 $${a}\:{polynomial}\:{gives}\:{a}\:{remainder} \\ $$$${of}\:−{x}−\mathrm{1}\:{when}\:{divided}\:{by}\:{x}^{\mathrm{2}.} \\ $$$${and}\:\:{a}\:{remainder}\:{of}\:−\mathrm{1}\:{when}\: \\ $$$${divided}\:{by}\:{x}−\mathrm{1}\:.\:{what}\:{is}\:{the}\: \\ $$$${remainder}\:{when}\:{the}\:{polynomial} \\ $$$${divided}\:{by}\:{x}^{\mathrm{2}} \left({x}−\mathrm{1}\right)\:? \\ $$ Answered by…
Question Number 148092 by puissant last updated on 25/Jul/21 Answered by Olaf_Thorendsen last updated on 25/Jul/21 $$\mathrm{R}\:\mathrm{est}\:\mathrm{le}\:\mathrm{rayon}\:\mathrm{du}\:\mathrm{cercle}. \\ $$$$\mathrm{O}\:\mathrm{est}\:\mathrm{le}\:\mathrm{centre}\:\mathrm{du}\:\mathrm{cercle}. \\ $$$$\mathrm{B}\begin{pmatrix}{\mathrm{R}}\\{\mathrm{R}}\end{pmatrix},\:\mathrm{C}\begin{pmatrix}{\mathrm{R}}\\{\mathrm{R}−\mathrm{15}}\end{pmatrix} \\ $$$$\mathrm{Aire}_{\mathrm{ABC}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{AB}×\mathrm{AC} \\…