Menu Close

Author: Tinku Tara

A-1-0-e-x-1-x-amp-aA-e-b-0-1-e-x-1-x-than-a-b-a-b-Z-

Question Number 148026 by mnjuly1970 last updated on 25/Jul/21 $$ \\ $$$$\mathrm{A}\::=\int_{−\mathrm{1}} ^{\:\mathrm{0}} {e}^{\:{x}\:+\frac{\mathrm{1}}{{x}}} \:\:\&\:{a}\mathrm{A}+{e}^{{b}} =\:\int_{\mathrm{0}} ^{\:\infty} \left(\frac{\mathrm{1}}{{e}}\right)^{\:{x}+\frac{\mathrm{1}}{{x}}} \\ $$$$\:\:{than}\::\:\:{a}+\:{b}\:=?\:\:\:\:\:{a}\:,\:{b}\:\in\:\mathbb{Z} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$ Answered…

Let-M-be-a-point-in-interior-of-ABC-Three-lines-are-drawn-through-M-parallel-to-triangle-s-sides-thereby-producing-three-trapezoids-Suppose-a-diagonal-is-drawn-in-each-trapezoid-in-such-a-way-tha

Question Number 16951 by Tinkutara last updated on 28/Jun/17 $$\mathrm{Let}\:{M}\:\mathrm{be}\:\mathrm{a}\:\mathrm{point}\:\mathrm{in}\:\mathrm{interior}\:\mathrm{of}\:\Delta{ABC}. \\ $$$$\mathrm{Three}\:\mathrm{lines}\:\mathrm{are}\:\mathrm{drawn}\:\mathrm{through}\:{M}, \\ $$$$\mathrm{parallel}\:\mathrm{to}\:\mathrm{triangle}'\mathrm{s}\:\mathrm{sides},\:\mathrm{thereby} \\ $$$$\mathrm{producing}\:\mathrm{three}\:\mathrm{trapezoids}.\:\mathrm{Suppose}\:\mathrm{a} \\ $$$$\mathrm{diagonal}\:\mathrm{is}\:\mathrm{drawn}\:\mathrm{in}\:\mathrm{each}\:\mathrm{trapezoid}\:\mathrm{in} \\ $$$$\mathrm{such}\:\mathrm{a}\:\mathrm{way}\:\mathrm{that}\:\mathrm{the}\:\mathrm{diagonals}\:\mathrm{have}\:\mathrm{no} \\ $$$$\mathrm{common}\:\mathrm{endpoints}.\:\mathrm{These}\:\mathrm{three} \\ $$$$\mathrm{diagonals}\:\mathrm{divide}\:{ABC}\:\mathrm{into}\:\mathrm{seven} \\…

Question-82485

Question Number 82485 by naka3546 last updated on 21/Feb/20 Commented by abdomathmax last updated on 21/Feb/20 $${let}\:{f}\left({x}\right)=\frac{\mathrm{6}}{{t}^{\mathrm{2}} }−\frac{{sin}\left(\mathrm{6}{t}\right)}{{t}^{\mathrm{3}} {cos}^{\mathrm{2}} \left(\mathrm{3}{t}\right)}\:\Rightarrow \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\left\{\mathrm{6}−\frac{{sin}\left(\mathrm{6}{t}\right)}{{t}\:{cos}^{\mathrm{2}} \left(\mathrm{3}{t}\right)}\right\}\:{we}\:{have}\: \\…

Through-the-vertices-of-the-smaller-base-AB-of-the-trapezoid-ABCD-two-parallel-lines-are-drawn-intersecting-the-segment-CD-These-lines-and-the-trapezoid-s-diagonals-divide-it-into-seven-triangles-an

Question Number 16947 by Tinkutara last updated on 28/Jun/17 $$\mathrm{Through}\:\mathrm{the}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{the}\:\mathrm{smaller} \\ $$$$\mathrm{base}\:{AB}\:\mathrm{of}\:\mathrm{the}\:\mathrm{trapezoid}\:{ABCD}\:\mathrm{two} \\ $$$$\mathrm{parallel}\:\mathrm{lines}\:\mathrm{are}\:\mathrm{drawn},\:\mathrm{intersecting} \\ $$$$\mathrm{the}\:\mathrm{segment}\:{CD}.\:\mathrm{These}\:\mathrm{lines}\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{trapezoid}'\mathrm{s}\:\mathrm{diagonals}\:\mathrm{divide}\:\mathrm{it}\:\mathrm{into} \\ $$$$\mathrm{seven}\:\mathrm{triangles}\:\mathrm{and}\:\mathrm{a}\:\mathrm{pentagon}.\:\mathrm{Show} \\ $$$$\mathrm{that}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{pentagon}\:\mathrm{equals} \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{areas}\:\mathrm{of}\:\mathrm{the}\:\mathrm{three} \\…

Consider-the-quadrilateral-ABCD-The-points-M-N-P-and-Q-are-the-midpoints-of-the-sides-AB-BC-CD-and-DA-Let-X-AP-BQ-Y-BQ-CM-Q-CM-DN-and-T-DN-AP-Prove-that-XYZT-AQX-BMY-

Question Number 16946 by Tinkutara last updated on 28/Jun/17 $$\mathrm{Consider}\:\mathrm{the}\:\mathrm{quadrilateral}\:{ABCD}. \\ $$$$\mathrm{The}\:\mathrm{points}\:{M},\:{N},\:{P}\:\mathrm{and}\:{Q}\:\mathrm{are}\:\mathrm{the} \\ $$$$\mathrm{midpoints}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sides}\:{AB},\:{BC},\:{CD} \\ $$$$\mathrm{and}\:{DA}. \\ $$$$\mathrm{Let}\:{X}\:=\:{AP}\:\cap\:{BQ},\:{Y}\:=\:{BQ}\:\cap\:{CM}, \\ $$$${Q}\:=\:{CM}\:\cap\:{DN}\:\mathrm{and}\:{T}=\:{DN}\:\cap\:{AP}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\left[{XYZT}\right]\:=\:\left[{AQX}\right]\:+\:\left[{BMY}\right] \\ $$$$+\:\left[{CNZ}\right]\:+\:\left[{DPT}\right]. \\…

Find-the-number-of-digits-in-the-number-2-2005-5-2000-when-written-in-full-

Question Number 16944 by Tinkutara last updated on 28/Jun/17 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{digits}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{number}\:\mathrm{2}^{\mathrm{2005}} \:×\:\mathrm{5}^{\mathrm{2000}} \:\mathrm{when}\:\mathrm{written}\:\mathrm{in} \\ $$$$\mathrm{full}. \\ $$ Commented by RasheedSoomro last updated on 28/Jun/17…

A-distance-of-200-km-is-to-be-covered-by-car-in-less-than-10-hours-Yash-does-it-in-two-parts-He-first-drives-for-150-km-at-an-average-speed-of-36-km-hr-without-stopping-After-taking-rest-for-30-mi

Question Number 16942 by Tinkutara last updated on 28/Jun/17 $$\mathrm{A}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{200}\:\mathrm{km}\:\mathrm{is}\:\mathrm{to}\:\mathrm{be}\:\mathrm{covered}\:\mathrm{by} \\ $$$$\mathrm{car}\:\mathrm{in}\:\mathrm{less}\:\mathrm{than}\:\mathrm{10}\:\mathrm{hours}.\:\mathrm{Yash}\:\mathrm{does}\:\mathrm{it} \\ $$$$\mathrm{in}\:\mathrm{two}\:\mathrm{parts}.\:\mathrm{He}\:\mathrm{first}\:\mathrm{drives}\:\mathrm{for}\:\mathrm{150}\:\mathrm{km} \\ $$$$\mathrm{at}\:\mathrm{an}\:\mathrm{average}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{36}\:\mathrm{km}/\mathrm{hr}, \\ $$$$\mathrm{without}\:\mathrm{stopping}.\:\mathrm{After}\:\mathrm{taking}\:\mathrm{rest}\:\mathrm{for} \\ $$$$\mathrm{30}\:\mathrm{minutes},\:\mathrm{he}\:\mathrm{starts}\:\mathrm{again}\:\mathrm{and}\:\mathrm{covers} \\ $$$$\mathrm{the}\:\mathrm{remaining}\:\mathrm{distance}\:\mathrm{non}-\mathrm{stop}.\:\mathrm{His} \\ $$$$\mathrm{average}\:\mathrm{for}\:\mathrm{the}\:\mathrm{entire}\:\mathrm{journey} \\…

mathematics-5-11-x-13-3-x-x-N-find-values-of-x-

Question Number 148015 by mnjuly1970 last updated on 25/Jul/21 $$\:\:\:\:\:\:\:\:……..\:{mathematics}……. \\ $$$$\:\:\:\:\:\:\:\mathrm{5}\:\left(\mathrm{11}\right)^{\:{x}} \:\overset{\mathrm{13}} {\equiv}\:\mathrm{3}^{\:{x}} \:\:\:\:\:\left(\:{x}\:\in\:\mathbb{N}\:\right)\:\:\: \\ $$$$\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:{find}\:{values}\:{of}\:\:\:\:::\:\:\:\:{x}\:=\:? \\ $$$$ \\ $$ Commented by…