Menu Close

Author: Tinku Tara

Let-P-be-a-point-on-the-circumcircle-of-the-equilateral-triangle-ABC-Prove-that-the-projections-of-any-point-Q-onto-the-lines-PA-PB-and-PC-are-the-vertices-of-an-equilateral-triangle-

Question Number 16878 by Tinkutara last updated on 27/Jun/17 $$\mathrm{Let}\:{P}\:\mathrm{be}\:\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{circumcircle}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{equilateral}\:\mathrm{triangle}\:{ABC}.\:\mathrm{Prove} \\ $$$$\mathrm{that}\:\mathrm{the}\:\mathrm{projections}\:\mathrm{of}\:\mathrm{any}\:\mathrm{point}\:{Q} \\ $$$$\mathrm{onto}\:\mathrm{the}\:\mathrm{lines}\:{PA},\:{PB}\:\mathrm{and}\:{PC}\:\mathrm{are}\:\mathrm{the} \\ $$$$\mathrm{vertices}\:\mathrm{of}\:\mathrm{an}\:\mathrm{equilateral}\:\mathrm{triangle}. \\ $$ Commented by prakash jain last…

From-a-point-on-the-circumcircle-of-an-equilateral-triangle-ABC-parallels-to-the-sides-BC-CA-and-AB-are-drawn-intersecting-the-sides-CA-AB-and-BC-at-the-points-M-N-P-respectively-Prove-that-the

Question Number 16877 by Tinkutara last updated on 27/Jun/17 $$\mathrm{From}\:\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{circumcircle}\:\mathrm{of}\:\mathrm{an} \\ $$$$\mathrm{equilateral}\:\mathrm{triangle}\:{ABC}\:\mathrm{parallels}\:\mathrm{to} \\ $$$$\mathrm{the}\:\mathrm{sides}\:{BC},\:{CA}\:\mathrm{and}\:{AB}\:\mathrm{are}\:\mathrm{drawn}, \\ $$$$\mathrm{intersecting}\:\mathrm{the}\:\mathrm{sides}\:{CA},\:{AB}\:\mathrm{and}\:{BC} \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{points}\:{M},\:{N},\:{P},\:\mathrm{respectively}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{points}\:{M},\:{N}\:\mathrm{and}\:{P}\:\mathrm{are} \\ $$$$\mathrm{collinear}. \\ $$ Terms…

In-how-many-ways-can-a-family-of-5-brothers-be-seated-round-a-table-if-i-2-brothers-must-seat-next-to-each-other-ii-2-brothers-must-not-seat-together-

Question Number 16876 by tawa tawa last updated on 27/Jun/17 $$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{a}\:\mathrm{family}\:\mathrm{of}\:\mathrm{5}\:\mathrm{brothers}\:\mathrm{be}\:\mathrm{seated}\:\mathrm{round}\:\mathrm{a}\:\mathrm{table} \\ $$$$\mathrm{if}\:\left(\mathrm{i}\right)\:\mathrm{2}\:\mathrm{brothers}\:\mathrm{must}\:\mathrm{seat}\:\mathrm{next}\:\mathrm{to}\:\mathrm{each}\:\mathrm{other}. \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{2}\:\mathrm{brothers}\:\mathrm{must}\:\mathrm{not}\:\mathrm{seat}\:\mathrm{together}. \\ $$ Answered by mrW1 last updated on 27/Jun/17 $$\left(\mathrm{i}\right)…

Let-P-1-P-2-P-n-be-a-convex-polygon-with-the-following-property-for-any-two-vertices-P-i-and-P-j-there-exists-a-vertex-P-k-such-that-the-segment-P-i-P-j-is-seen-from-P-k-under-an-ang

Question Number 16875 by Tinkutara last updated on 27/Jun/17 $$\mathrm{Let}\:{P}_{\mathrm{1}} ,\:{P}_{\mathrm{2}} ,\:…,\:{P}_{{n}} \:\mathrm{be}\:\mathrm{a}\:\mathrm{convex}\:\mathrm{polygon} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{following}\:\mathrm{property}\::\:\mathrm{for}\:\mathrm{any} \\ $$$$\mathrm{two}\:\mathrm{vertices}\:{P}_{{i}} \:\mathrm{and}\:{P}_{{j}} ,\:\mathrm{there}\:\mathrm{exists}\:\mathrm{a} \\ $$$$\mathrm{vertex}\:{P}_{{k}} \:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{segment}\:{P}_{{i}} {P}_{{j}} \\ $$$$\mathrm{is}\:\mathrm{seen}\:\mathrm{from}\:{P}_{{k}}…

Let-ABC-be-an-acute-triangle-The-interior-bisectors-of-the-angles-B-and-C-meet-the-opposite-sides-at-the-points-L-and-M-respectively-Prove-that-there-exists-a-point-K-in-the-interior-of-the-side-

Question Number 16874 by Tinkutara last updated on 27/Jun/17 $$\mathrm{Let}\:{ABC}\:\mathrm{be}\:\mathrm{an}\:\mathrm{acute}\:\mathrm{triangle}.\:\mathrm{The} \\ $$$$\mathrm{interior}\:\mathrm{bisectors}\:\mathrm{of}\:\mathrm{the}\:\mathrm{angles}\:\angle{B}\:\mathrm{and} \\ $$$$\angle{C}\:\mathrm{meet}\:\mathrm{the}\:\mathrm{opposite}\:\mathrm{sides}\:\mathrm{at}\:\mathrm{the} \\ $$$$\mathrm{points}\:{L}\:\mathrm{and}\:{M},\:\mathrm{respectively}.\:\mathrm{Prove} \\ $$$$\mathrm{that}\:\mathrm{there}\:\mathrm{exists}\:\mathrm{a}\:\mathrm{point}\:{K}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{interior}\:\mathrm{of}\:\mathrm{the}\:\mathrm{side}\:{BC}\:\mathrm{such}\:\mathrm{that} \\ $$$$\Delta{KLM}\:\mathrm{is}\:\mathrm{equilateral}\:\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if} \\ $$$$\angle{A}\:=\:\mathrm{60}°. \\…

Let-I-be-the-incenter-of-ABC-It-is-known-that-for-every-point-M-AB-one-can-find-the-points-N-BC-and-P-AC-such-that-I-is-the-centroid-of-MNP-Prove-that-ABC-is-an-equilateral-triangle-

Question Number 16873 by Tinkutara last updated on 27/Jun/17 $$\mathrm{Let}\:{I}\:\mathrm{be}\:\mathrm{the}\:\mathrm{incenter}\:\mathrm{of}\:\Delta{ABC}.\:\mathrm{It}\:\mathrm{is} \\ $$$$\mathrm{known}\:\mathrm{that}\:\mathrm{for}\:\mathrm{every}\:\mathrm{point}\:{M}\:\in\:\left({AB}\right), \\ $$$$\mathrm{one}\:\mathrm{can}\:\mathrm{find}\:\mathrm{the}\:\mathrm{points}\:{N}\:\in\:\left({BC}\right)\:\mathrm{and} \\ $$$${P}\:\in\:\left({AC}\right)\:\mathrm{such}\:\mathrm{that}\:{I}\:\mathrm{is}\:\mathrm{the}\:\mathrm{centroid}\:\mathrm{of} \\ $$$$\Delta{MNP}.\:\mathrm{Prove}\:\mathrm{that}\:{ABC}\:\mathrm{is}\:\mathrm{an} \\ $$$$\mathrm{equilateral}\:\mathrm{triangle}. \\ $$ Terms of Service…