Question Number 147682 by mathmax by abdo last updated on 22/Jul/21 $$\mathrm{decompose}\:\mathrm{F}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\left(\mathrm{x}^{\mathrm{n}} −\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}+\mathrm{1}\right)}\:\mathrm{dans}\:\mathrm{C}\left(\mathrm{x}\right)\:\mathrm{puis}\:\mathrm{dans}\:\mathrm{R}\left(\mathrm{x}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 147678 by mathmax by abdo last updated on 22/Jul/21 $$\mathrm{roots}\:\mathrm{of}\:\:\Upsilon_{\mathrm{n}} \left(\mathrm{x}\right)=\mathrm{sin}\left(\mathrm{narcsinx}\right)\:\:\left(\mathrm{n}\:\mathrm{integr}\:\mathrm{natural}\right) \\ $$$$\mathrm{deompose}\:\mathrm{F}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\Upsilon_{\mathrm{n}} \left(\mathrm{x}\right)} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 147673 by mnjuly1970 last updated on 22/Jul/21 Answered by Rasheed.Sindhi last updated on 22/Jul/21 $$\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{3}}]{{x}−\mathrm{2}}=\sqrt[{\mathrm{3}}]{{x}−\mathrm{1}} \\ $$$$\left(\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{3}}]{{x}−\mathrm{2}}\right)^{\mathrm{3}} =\left(\sqrt[{\mathrm{3}}]{{x}−\mathrm{1}}\right)^{\mathrm{3}} \\ $$$${x}+{x}−\mathrm{2}+\mathrm{3}\sqrt[{\mathrm{3}}]{{x}}\sqrt[{\mathrm{3}}]{{x}−\mathrm{2}}\left(\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{3}}]{{x}−\mathrm{2}}\right)={x}−\mathrm{1} \\ $$$$\mathrm{3}\sqrt[{\mathrm{3}}]{{x}}\sqrt[{\mathrm{3}}]{{x}−\mathrm{2}}\left(\sqrt[{\mathrm{3}}]{{x}−\mathrm{1}}\right)=−{x}+\mathrm{1} \\…
Question Number 82138 by oyemi kemewari last updated on 18/Feb/20 Commented by mr W last updated on 18/Feb/20 $${sir}:\:{please}\:{try}\:{to}\:{post}\:{image}\:{with}\:{better} \\ $$$${quality}\:{such}\:{that}\:{other}\:{people}\:{can}\:{read} \\ $$$${and}\:{understand}\:{your}\:{question}.\: \\ $$$${before}\:{posting}\:{please}\:{try}\:{to}\:{prepare}…
Question Number 82139 by jagoll last updated on 18/Feb/20 $$\int\:\:\frac{\sqrt{{x}^{\mathrm{4}} +{x}^{−\mathrm{4}} +\mathrm{2}}}{{x}^{\mathrm{3}} }\:{dx}\: \\ $$ Answered by mind is power last updated on 18/Feb/20 $${x}^{\mathrm{4}}…
Question Number 16600 by tawa tawa last updated on 24/Jun/17 $$\mathrm{Solve}\:\mathrm{simultaneously} \\ $$$$\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{61}\:\:\:\:\:\:\:\:\:…………..\:\mathrm{equation}\:\left(\mathrm{i}\right) \\ $$$$\mathrm{x}^{\mathrm{3}} \:−\:\mathrm{y}^{\mathrm{3}} \:=\:\mathrm{91}\:\:\:\:\:\:\:\:\:…………..\:\mathrm{equation}\:\left(\mathrm{ii}\right) \\ $$ Commented by prakash jain…
Question Number 82134 by Raxreedoroid last updated on 18/Feb/20 Commented by Raxreedoroid last updated on 18/Feb/20 $$\mathrm{if}\:{s}\:\mathrm{is}\:\mathrm{an}\:\mathrm{arc}\:\mathrm{for}\:\mathrm{Circle}\:\mathrm{C} \\ $$$$\mathrm{and}\:\mathrm{r}\:\mathrm{and}\:\mathrm{Radius}\:\mathrm{are}\:\mathrm{Radius}\:\mathrm{for}\:\mathrm{C} \\ $$$$\mathrm{then}… \\ $$$${s}=\frac{\mathrm{7}\pi}{\mathrm{6}} \\ $$$${d}=\frac{\mathrm{7}\left(\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}\right)}{\mathrm{2}}…
Question Number 16598 by Tinkutara last updated on 24/Jun/17 $$\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{cos}^{\mathrm{3}} \:\mathrm{2}\theta\:+\:\mathrm{3}\:\mathrm{cos}\:\mathrm{2}\theta\:=\:\mathrm{4}\left(\mathrm{cos}^{\mathrm{6}} \:\theta\:−\:\mathrm{sin}^{\mathrm{6}} \:\theta\right) \\ $$ Answered by ajfour last updated on 24/Jun/17 $$\mathrm{L}.\mathrm{H}.\mathrm{S}.\:=\:\mathrm{cos}\:\mathrm{2}\theta\left(\mathrm{cos}\:^{\mathrm{2}}…
Question Number 147670 by mnjuly1970 last updated on 22/Jul/21 Answered by Olaf_Thorendsen last updated on 22/Jul/21 $$\mathrm{By}\:\mathrm{definition}\:\mathrm{H}_{{n}} ^{\left(\mathrm{2}\right)} \:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\mathrm{H}_{{n}−\mathrm{1}} ^{\left(\mathrm{2}\right)}…
Question Number 82130 by TawaTawa last updated on 18/Feb/20 $$\mathrm{In}\:\mathrm{an}\:\mathrm{arrangement}\:\mathrm{of}\:\mathrm{the}\:\mathrm{word}\:\:\mathrm{VIOLENT},\:\mathrm{find}\:\mathrm{the}\:\mathrm{chances} \\ $$$$\mathrm{that}\:\mathrm{the}\:\mathrm{vowels}\:\:\:\mathrm{I},\:\mathrm{O},\:\mathrm{E}\:\:\:\mathrm{occupy}\:\mathrm{the}\:\mathrm{odd}\:\mathrm{positions}. \\ $$ Commented by mr W last updated on 18/Feb/20 $${we}\:{have}\:\mathrm{4}\:{odd}\:{positions}:\:\mathrm{1},\:\mathrm{3},\:\mathrm{5},\:\mathrm{7} \\ $$$${we}\:{have}\:\mathrm{3}\:{even}\:{positions}:\:\mathrm{2},\:\mathrm{4},\:\mathrm{6}…