Menu Close

Author: Tinku Tara

P-a-z-z-2n-2z-n-cosa-1-montrer-que-p-a-z-k-0-n-1-z-2-2zcos-a-pi-2kpi-n-1-

Question Number 147302 by puissant last updated on 19/Jul/21 $${P}_{{a}} \left({z}\right)={z}^{\mathrm{2}{n}} −\mathrm{2}{z}^{{n}} {cosa}+\mathrm{1} \\ $$$${montrer}\:{que}\:\:{p}_{{a}} \left(\mathrm{z}\right)=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({z}^{\mathrm{2}} −\mathrm{2}{zcos}\left(\frac{{a}}{\pi}+\frac{\mathrm{2}{k}\pi}{{n}}\right)+\mathrm{1}\right) \\ $$ Answered by mathmax by…

Q-Find-the-minimum-value-of-3cosx-4sinx-8-

Question Number 81763 by Khyati last updated on 15/Feb/20 $${Q}.\:{Find}\:{the}\:{minimum}\:{value}\:{of}\: \\ $$$$\mathrm{3}{cosx}\:+\:\mathrm{4}{sinx}\:+\:\mathrm{8}. \\ $$ Commented by john santu last updated on 15/Feb/20 $${f}\left({x}\right)=\:\mathrm{3cos}\:{x}+\mathrm{4sin}\:{x}+\mathrm{8} \\ $$$${f}\left({x}\right)\:=\:\sqrt{\mathrm{9}+\mathrm{16}}\:\mathrm{cos}\:\left({x}−\theta\right)+\mathrm{8}\:,\:{where}\:\theta=\mathrm{tan}^{−\mathrm{1}}…

Question-81759

Question Number 81759 by peter frank last updated on 15/Feb/20 Commented by JDamian last updated on 15/Feb/20 $${What}\:{are}\:{the}\:\boldsymbol{{spinning}}\:\boldsymbol{{coefficient}}\:{and} \\ $$$${the}\:\boldsymbol{{luctus}}\:\boldsymbol{{rectum}}\:{of}\:{a}\:{parabola}? \\ $$ Terms of Service…

Question-16220

Question Number 16220 by Mr easymsn last updated on 19/Jun/17 Answered by liday last updated on 19/Jun/17 $$\mathrm{let}\:\mathrm{x}^{\frac{\mathrm{3}}{\mathrm{2}}\mathrm{n}} =\mathrm{a}\:\mathrm{then}\:\mathrm{8a}+\frac{\mathrm{8}}{\mathrm{a}}=\mathrm{63}\:\Rightarrow\mathrm{8a}^{\mathrm{2}} −\mathrm{63a}+\mathrm{8}=\mathrm{0} \\ $$$$\mathrm{a}=\frac{\mathrm{63}\pm\sqrt{\mathrm{63}^{\mathrm{2}} −\mathrm{4}×\mathrm{8}×\mathrm{8}}}{\mathrm{16}}=\frac{\mathrm{63}\pm\sqrt{\mathrm{3713}}}{\mathrm{16}} \\ $$$$\Rightarrow\mathrm{x}^{\frac{\mathrm{3}}{\mathrm{2}}\mathrm{n}}…

Q-if-g-x-2-x-x-D-g-0-then-g-1-x-D-g-1-

Question Number 147285 by mnjuly1970 last updated on 19/Jul/21 $$\:\:\:\mathrm{Q}: \\ $$$$ \\ $$$$\:{if}\:,\:\:\:{g}\:\left({x}\right)\:=\:\mathrm{2}^{\:\lfloor{x}\rfloor\:+\:{x}} \:\:,\:\mathrm{D}_{\:{g}} =\:\left[\mathrm{0},\:\infty\:\right) \\ $$$$\:\:\:\:\:\:{then}\:: \\ $$$$\:\:\:\:\:\:\:\:{g}^{\:−\mathrm{1}} \:\left({x}\:\right)=? \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{D}_{{g}^{\:−\mathrm{1}} } =\:?…