Question Number 147256 by mathdanisur last updated on 19/Jul/21 Commented by mitica last updated on 19/Jul/21 $$ \\ $$$${i}'{m}\:{waiting}\:{for}\:{a}\:{solution} \\ $$ Commented by Rasheed.Sindhi last…
Question Number 147259 by mathdanisur last updated on 19/Jul/21 Answered by Rasheed.Sindhi last updated on 19/Jul/21 $$\bigtriangleup{AED}: \\ $$$$\because{AD}\:{is}\:{diameter} \\ $$$$\therefore\angle{AED}=\mathrm{90} \\ $$$${tan}\angle{A}=\frac{\mathrm{1}}{\mathrm{3}}\:\Rightarrow\angle{A}=\mathrm{19}.\mathrm{47} \\ $$$${AC}=\sqrt{{AE}^{\mathrm{2}}…
Question Number 81720 by mathmax by abdo last updated on 14/Feb/20 $${let}\:{f}\left({x}\right)={arctan}\left(\mathrm{1}+{x}^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developpf}\:{at}\:{integr}\:{serie} \\ $$ Commented by mathmax by…
Question Number 147258 by alcohol last updated on 19/Jul/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 147252 by mathlove last updated on 19/Jul/21 Answered by Olaf_Thorendsen last updated on 19/Jul/21 $${l}\:=\:\left(\frac{\mathrm{1}}{\mathrm{5}}+\left(\frac{\mathrm{1}}{\mathrm{5}}+\left(\frac{\mathrm{1}}{\mathrm{5}}+…\right)^{\mathrm{2}} \right)^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$${l}\:=\:\left(\frac{\mathrm{1}}{\mathrm{5}}+{l}\right)^{\mathrm{2}} \\ $$$${l}^{\mathrm{2}} −\frac{\mathrm{3}}{\mathrm{5}}{l}+\frac{\mathrm{1}}{\mathrm{25}}\:=\:\mathrm{0} \\…
Question Number 81719 by mathmax by abdo last updated on 14/Feb/20 $$\left.\mathrm{1}\right)\:{find}\:\int\:\:\:\frac{{dx}}{\left({x}+\mathrm{2}\right)^{\mathrm{5}} \left({x}−\mathrm{3}\right)^{\mathrm{9}} } \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{4}} ^{+\infty} \:\frac{{dx}}{\left({x}+\mathrm{2}\right)^{\mathrm{5}} \left({x}−\mathrm{3}\right)^{\mathrm{9}} } \\ $$ Commented…
Question Number 147254 by Ar Brandon last updated on 19/Jul/21 $$\left.\mathrm{Soient}\:\mathrm{a}\in\right]\mathrm{0},\:\mathrm{1}\left[\:\mathrm{et}\:\mathrm{b}\in\mathbb{R}.\:\mathrm{Soit}\:\mathrm{f}\:\mathrm{une}\:\mathrm{application}\:\mathrm{de}\:\mathbb{R}\:\mathrm{dans}\:\mathrm{lui}-\mathrm{m}\hat {\mathrm{e}me},\:\mathrm{de}\:\mathrm{classe}\:\mathrm{C}^{\mathrm{1}} ,\:\mathrm{telle}\:\mathrm{que}\:\mathrm{pour}\:\mathrm{tout}\:\mathrm{r}\acute {\mathrm{e}el}\right. \\ $$$$\mathrm{x},\:\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right)=\mathrm{ax}+\mathrm{b}. \\ $$$$ \\ $$$$\mathrm{1}.\:\:\mathrm{Montrer}\:\mathrm{que}\:\mathrm{pour}\:\mathrm{tout}\:\mathrm{r}\acute {\mathrm{e}el}\:\mathrm{x},\:\mathrm{f}\left(\mathrm{ax}+\mathrm{b}\right)=\mathrm{af}\left(\mathrm{x}\right)+\mathrm{b}.\:\mathrm{En}\:\mathrm{d}\acute {\mathrm{e}duire}\:\mathrm{que}\:\mathrm{pour}\:\mathrm{tout}\:\mathrm{r}\acute {\mathrm{e}el}\:\mathrm{x}, \\ $$$$\:\:\mathrm{f}\:'\left(\mathrm{ax}+\mathrm{b}\right)=\mathrm{f}\:'\left(\mathrm{x}\right).…
Question Number 16179 by Tinkutara last updated on 24/Jun/17 $$\mathrm{If}\:{a}\:>\:\mathrm{0},\:{b}\:>\:\mathrm{0}\:\mathrm{and}\:\mathrm{the}\:\mathrm{minimum} \\ $$$$\mathrm{value}\:\mathrm{of}\:{a}\:\mathrm{sin}^{\mathrm{2}} \:\theta\:+\:{b}\:\mathrm{cosec}^{\mathrm{2}} \:\theta\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:{a}\:\mathrm{sin}^{\mathrm{2}} \:\theta\:+\:{b}\:\mathrm{cos}^{\mathrm{2}} \:\theta, \\ $$$$\mathrm{then}\:\frac{{a}}{{b}}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\left[\boldsymbol{\mathrm{Answer}}:\:\mathrm{4}\right] \\ $$ Answered by ajfour…
Question Number 81704 by mathmax by abdo last updated on 14/Feb/20 $${find}\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:{and}\:\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 147233 by jlewis last updated on 19/Jul/21 Commented by Olaf_Thorendsen last updated on 19/Jul/21 $$\mathrm{You}\:\mathrm{should}\:\mathrm{named}\:\mathrm{the}\:\mathrm{nodes}\:\mathrm{with} \\ $$$$\mathrm{letters}\:\mathrm{A},\:\mathrm{B},\:\mathrm{C}…\:.\:\mathrm{It}\:\mathrm{will}\:\mathrm{be}\:\mathrm{easiest}\:\mathrm{to} \\ $$$$\:\mathrm{answer}\:\mathrm{mister}. \\ $$ Terms of…