Menu Close

Author: Tinku Tara

find-U-n-0-e-nx-2-x-2-n-2-dx-n-1-nature-of-U-n-and-nU-n-

Question Number 147203 by mathmax by abdo last updated on 18/Jul/21 $$\mathrm{find}\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{e}^{−\mathrm{nx}^{\mathrm{2}} } }{\mathrm{x}^{\mathrm{2}} \:+\mathrm{n}^{\mathrm{2}} }\mathrm{dx}\:\:\:\:\:\left(\mathrm{n}\geqslant\mathrm{1}\right) \\ $$$$\mathrm{nature}\:\mathrm{of}\:\Sigma\mathrm{U}_{\mathrm{n}} \:\mathrm{and}\:\Sigma\:\mathrm{nU}_{\mathrm{n}} \\ $$ Answered…