Menu Close

Author: Tinku Tara

lim-x-0-3-x-5-x-6-x-3-1-x-

Question Number 147169 by mathdanisur last updated on 18/Jul/21 $$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\left(\frac{\mathrm{3}^{\boldsymbol{{x}}} \:+\:\mathrm{5}^{\boldsymbol{{x}}} \:+\:\mathrm{6}^{\boldsymbol{{x}}} }{\mathrm{3}}\right)^{\frac{\mathrm{1}}{\boldsymbol{{x}}}} =\:? \\ $$ Commented by gsk2684 last updated on 18/Jul/21 $$\underset{{x}\rightarrow\mathrm{0}}…

The-number-of-solutions-of-sin-x-tan-x-in-0-4pi-is-are-

Question Number 16093 by Tinkutara last updated on 17/Jun/17 $$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{of} \\ $$$$\mid\mathrm{sin}\:{x}\mid\:=\:\mathrm{tan}\:{x}\:\mathrm{in}\:\left[\mathrm{0},\:\mathrm{4}\pi\right]\:\mathrm{is}/\mathrm{are}? \\ $$ Commented by Tinkutara last updated on 17/Jun/17 $$\mathrm{My}\:\mathrm{answer}\:\mathrm{comes}\:\mathrm{out}\:\mathrm{to}\:\mathrm{be}\:\mathrm{5}\:\mathrm{but} \\ $$$$\mathrm{answer}\:\mathrm{in}\:\mathrm{book}\:\mathrm{is}\:\mathrm{6}.\:\mathrm{How}? \\…

Find-the-set-of-values-of-x-0-2pi-which-satisfy-sin-x-gt-cos-x-1-pi-4-3pi-4-5pi-4-2pi-2-0-pi-4-5pi-4-2pi-3-pi-4-5pi-4-4-0-3pi-4-5pi-4-2pi-

Question Number 16092 by Tinkutara last updated on 17/Jun/17 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:{x}\:\in\:\left[\mathrm{0},\:\mathrm{2}\pi\right] \\ $$$$\mathrm{which}\:\mathrm{satisfy}\:\mathrm{sin}\:{x}\:>\:\mathrm{cos}\:{x}. \\ $$$$\left(\mathrm{1}\right)\:\left(\frac{\pi}{\mathrm{4}},\:\frac{\mathrm{3}\pi}{\mathrm{4}}\right)\:\cup\:\left(\frac{\mathrm{5}\pi}{\mathrm{4}},\:\mathrm{2}\pi\right) \\ $$$$\left(\mathrm{2}\right)\:\left(\mathrm{0},\:\frac{\pi}{\mathrm{4}}\right)\:\cup\:\left(\frac{\mathrm{5}\pi}{\mathrm{4}},\:\mathrm{2}\pi\right) \\ $$$$\left(\mathrm{3}\right)\:\left(\frac{\pi}{\mathrm{4}},\:\frac{\mathrm{5}\pi}{\mathrm{4}}\right) \\ $$$$\left(\mathrm{4}\right)\:\left(\mathrm{0},\:\frac{\mathrm{3}\pi}{\mathrm{4}}\right)\:\cup\:\left(\frac{\mathrm{5}\pi}{\mathrm{4}},\:\mathrm{2}\pi\right) \\ $$ Commented by Tinkutara…

The-maximum-value-of-the-expression-sin-2-x-2a-2-2a-2-3-cos-2-x-where-a-and-x-are-real-numbers-is-1-4-2-2-3-2-4-0-

Question Number 16090 by Tinkutara last updated on 17/Jun/17 $$\mathrm{The}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{expression} \\ $$$$\mid\sqrt{\mathrm{sin}^{\mathrm{2}} \:{x}\:+\:\mathrm{2}{a}^{\mathrm{2}} }\:−\:\sqrt{\mathrm{2}{a}^{\mathrm{2}} \:−\:\mathrm{3}\:−\:\mathrm{cos}^{\mathrm{2}} \:{x}}\mid; \\ $$$$\mathrm{where}\:'{a}'\:\mathrm{and}\:'{x}'\:\mathrm{are}\:\mathrm{real}\:\mathrm{numbers},\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{4} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{2} \\ $$$$\left(\mathrm{3}\right)\:\sqrt{\mathrm{2}} \\…

The-range-of-function-f-sin-2-1-1-sin-2-is-1-1-2-2-3-1-3-2-4-3-2-

Question Number 16089 by Tinkutara last updated on 17/Jun/17 $$\mathrm{The}\:\mathrm{range}\:\mathrm{of}\:\mathrm{function} \\ $$$${f}\left(\theta\right)\:=\:\mathrm{sin}^{\mathrm{2}} \:\theta\:+\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{sin}^{\mathrm{2}} \:\theta}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\left[\mathrm{1},\:\infty\right) \\ $$$$\left(\mathrm{2}\right)\:\left[\mathrm{2},\:\infty\right) \\ $$$$\left(\mathrm{3}\right)\:\left[\mathrm{1},\:\frac{\mathrm{3}}{\mathrm{2}}\right] \\ $$$$\left(\mathrm{4}\right)\:\left[\frac{\mathrm{3}}{\mathrm{2}},\:\infty\right) \\ $$ Commented…

Question-147162

Question Number 147162 by nadovic last updated on 18/Jul/21 Answered by liberty last updated on 18/Jul/21 $$\left(\mathrm{1}\right)\overset{\rightarrow} {{p}}=\frac{\mathrm{2}}{\mathrm{5}}\overset{\rightarrow} {{a}}+\frac{\mathrm{1}}{\mathrm{5}}\overset{\rightarrow} {{b}}+\frac{\mathrm{2}}{\mathrm{5}}\overset{\rightarrow} {{c}} \\ $$$$\left(\mathrm{2}\right)\overset{\rightarrow} {{p}}.\overset{\rightarrow} {{b}}=\overset{\rightarrow}…

Number-of-solution-of-equation-2-x-3x-7-x-is-where-Greatest-Integer-Function-amp-fractional-function-

Question Number 16087 by Tinkutara last updated on 17/Jun/17 $$\mathrm{Number}\:\mathrm{of}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{equation} \\ $$$$\mathrm{2}\left[−{x}\right]\:+\:\mathrm{3}{x}\:=\:\mathrm{7}\left\{{x}\right\}\:\mathrm{is}?\:\left(\mathrm{where}\:\left[\centerdot\right]\:=\right. \\ $$$$\mathrm{Greatest}\:\mathrm{Integer}\:\mathrm{Function}\:\&\:\left\{\centerdot\right\} \\ $$$$\left.\mathrm{fractional}\:\mathrm{function}.\right) \\ $$ Commented by prakash jain last updated on…