Question Number 205827 by mustafazaheen last updated on 31/Mar/24 $$\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} =\mathrm{1} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{implceat}\:\mathrm{second}\:\mathrm{derivative} \\ $$ Answered by cortano12 last updated on 31/Mar/24 $$\:\mathrm{3}{x}^{\mathrm{2}} +\:\mathrm{3}{y}^{\mathrm{2}}…
Question Number 205772 by mr W last updated on 30/Mar/24 Answered by MM42 last updated on 30/Mar/24 $${S}_{{n}} =\left(\sqrt{\mathrm{1}×\mathrm{2}}−\mathrm{1}\right) \\ $$$$+\left(\sqrt{\mathrm{2}×\mathrm{3}}−\sqrt{\mathrm{1}×\mathrm{2}}−\mathrm{1}\right) \\ $$$$+\left(\sqrt{\mathrm{3}×\mathrm{4}}−\sqrt{\mathrm{2}×\mathrm{3}}−\mathrm{1}\right) \\ $$$$\vdots…
Question Number 205789 by hardmath last updated on 30/Mar/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 205790 by hardmath last updated on 30/Mar/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 205774 by mnjuly1970 last updated on 30/Mar/24 $$ \\ $$$$\:\:\:\:\:\:−−−−−−− \\ $$$$\:\:\:\:\:\Omega\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\:\left(−\mathrm{1}\right)^{\:{n}} }{\left(−\mathrm{1}\right)^{\:{n}} \:−{n}}\:=\:?\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:−−−−−−− \\ $$ Answered by MathedUp…
Question Number 205791 by hardmath last updated on 30/Mar/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 205775 by SANOGO last updated on 30/Mar/24 $${calcu}/\:\:\:\:{limit}/{n}\rightarrow+{oo} \\ $$$$\:\:\int_{\mathrm{0}} ^{+{oo}} {arctan}\left(\frac{{x}}{{n}}\right){e}^{−{x}} {dx} \\ $$ Answered by MathedUp last updated on 30/Mar/24 $$\mathrm{let}'\mathrm{s}\:\mathrm{consider}\:{F}\left({s}\right)=\int_{\mathrm{0}}…
Question Number 205784 by MathedUp last updated on 30/Mar/24 Commented by MathedUp last updated on 30/Mar/24 $$\:\mathrm{meijier}\:\mathrm{G}\:\mathrm{function}….. \\ $$$$\mathrm{OMG}…. \\ $$ Commented by MathedUp last…
Question Number 205770 by hardmath last updated on 30/Mar/24 $$\mathrm{If}\:\:\mathrm{x},\mathrm{y},\mathrm{z}>\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{xyz}\:=\:\mathrm{1} \\ $$$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\frac{\left(\sqrt{\mathrm{2}}\mathrm{x}\right)^{\mathrm{2}} }{\left(\mathrm{1}+\mathrm{xz}\right)\left(\mathrm{1}+\mathrm{xy}\right)}\:+\:\frac{\left(\sqrt{\mathrm{2}}\mathrm{y}\right)^{\mathrm{2}} }{\left(\mathrm{1}+\mathrm{yz}\right)\left(\mathrm{1}+\mathrm{xy}\right)}\:+\:\frac{\left(\sqrt{\mathrm{2}}\mathrm{z}\right)^{\mathrm{2}} }{\left(\mathrm{1}+\mathrm{xz}\right)\left(\mathrm{1}+\mathrm{yz}\right)}\:\geqslant\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 205767 by lmcp1203 last updated on 30/Mar/24 $$ \\ $$$${a},{b},{c}\:\in\Re^{+} \:\: \\ $$$${a}+{b}+{c}=\mathrm{1} \\ $$$$\:\:\:{a}^{\mathrm{2}} /\left(\mathrm{1}+{b}+{c}\right)\:+\:{b}^{\mathrm{2}} /\left(\mathrm{1}+{a}+{c}\right)\:\:+\:{c}^{\mathrm{2}} /\left(\mathrm{1}+{a}+{b}\right)\geqslant{k} \\ $$$${find}\:\:\:{k}\:{max}. \\ $$$${hint}\::\:{inequality}\:{cauchy}\:{schwarz} \\…