Menu Close

Author: Tinku Tara

Multi-point-x-x-3-well-be-equal-to-the-values-of-the-function-ant-its-harvest-

Question Number 12207 by @ANTARES_VY last updated on 16/Apr/17 $$\boldsymbol{\mathrm{Multi}}−\boldsymbol{\mathrm{point}}\:\:\:\oint\left(\boldsymbol{\mathrm{x}}\right)=\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:\:\boldsymbol{\mathrm{well}}\:\boldsymbol{\mathrm{be}} \\ $$$$\boldsymbol{\mathrm{equal}}\:\:\boldsymbol{\mathrm{to}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{values}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{function}} \\ $$$$\boldsymbol{\mathrm{ant}}\:\:\boldsymbol{\mathrm{its}}\:\:\boldsymbol{\mathrm{harvest}}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

1-sin-x-dx-

Question Number 12201 by Nayon last updated on 16/Apr/17 $$\int\frac{\mathrm{1}}{{sin}\left({x}\right)}{dx} \\ $$ Answered by ajfour last updated on 16/Apr/17 $${I}=\int\:\frac{\left(\mathrm{cosec}\:{x}\right)\left(\mathrm{cosec}\:{x}+\mathrm{cot}\:{x}\right)}{\mathrm{cosec}\:{x}+\mathrm{cot}\:{x}}{dx} \\ $$$${let}\:\:\mathrm{cosec}\:{x}+\mathrm{cot}\:{x}\:=\:{t} \\ $$$$\frac{{dt}}{{dx}}=\:−\left(\mathrm{cosec}\:{x}\right)\mathrm{cot}\:{x}−\mathrm{cosec}\:^{\mathrm{2}} {x}…

Question-143274

Question Number 143274 by Aditya9886 last updated on 12/Jun/21 Answered by Olaf_Thorendsen last updated on 12/Jun/21 $${y}\:=\:\mathrm{sin}^{\mathrm{2}} \left(\mathrm{cos}{x}\right) \\ $$$$\frac{{dy}}{{dx}}\:=\:\left(−\mathrm{sin}{x}\right)×\mathrm{2cos}\left(\mathrm{cos}{x}\right)×\mathrm{sin}\left(\mathrm{cos}{x}\right) \\ $$$$\frac{{dy}}{{dx}}\:=\:−\mathrm{sin}{x}.\mathrm{sin}\left(\mathrm{2cos}{x}\right) \\ $$$$ \\…

Question-12197

Question Number 12197 by tawa last updated on 16/Apr/17 Commented by mrW1 last updated on 16/Apr/17 $${I}\:{think}\:{we}\:{can}\:{not}\:{find}\:{an}\:{analytical} \\ $$$${solution}.\:{The}\:{numerical}\:{solution}\:{can} \\ $$$${be}\:{found}\:{using}\:{a}\:{lot}\:{of}\:{apps},\:{e}.{g}.\:{geogebra}. \\ $$$${x}\approx\mathrm{2}.\mathrm{76909366} \\ $$…

Question-143270

Question Number 143270 by SLVR last updated on 12/Jun/21 Answered by Olaf_Thorendsen last updated on 12/Jun/21 $$\mathrm{B}\left({i},{j}\right)\:\geqslant\:\mathrm{1} \\ $$$$\mathrm{Let}\:{c}_{{ij}} \:=\:\mathrm{B}^{\mathrm{2}} \left({i},{j}\right)\:=\:\underset{{p}=\mathrm{1}} {\overset{\lambda} {\sum}}\underset{{q}=\mathrm{1}} {\overset{\lambda} {\sum}}{b}_{{ip}}…