Menu Close

Author: Tinku Tara

If-1-2-pi-cos-1-1-4-log-2-1-cos-6-cos-6-

Question Number 205429 by mnjuly1970 last updated on 21/Mar/24 $$ \\ $$$$\:\mathrm{I}{f},\:\:\varphi\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\left(\pi\:−{cos}^{\:−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{4}}\:\right)\right) \\ $$$$ \\ $$$$\:\:\:\Rightarrow\:\mathrm{log}_{\:\mathrm{2}} \left(\:\frac{\:\mathrm{1}+\:{cos}\left(\mathrm{6}\varphi\:\right)}{{cos}^{\mathrm{6}} \left(\varphi\:\right)}\:\right)\:=? \\ $$$$ \\ $$ Answered by…

Prove-that-in-any-ABC-1-sinA-1-sinB-1-sinC-2-3-cot-A-2-cot-B-2-cot-C-2-

Question Number 205430 by hardmath last updated on 21/Mar/24 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{in}\:\mathrm{any}\:\:\bigtriangleup\mathrm{ABC} \\ $$$$\frac{\mathrm{1}}{\mathrm{sinA}}\:+\:\frac{\mathrm{1}}{\mathrm{sinB}}\:+\:\frac{\mathrm{1}}{\mathrm{sinC}}\:\leqslant\:\frac{\mathrm{2}}{\mathrm{3}}\:\left(\mathrm{cot}\frac{\mathrm{A}}{\mathrm{2}}\:+\:\mathrm{cot}\frac{\mathrm{B}}{\mathrm{2}}\:+\:\mathrm{cot}\frac{\mathrm{C}}{\mathrm{2}}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-205456

Question Number 205456 by BaliramKumar last updated on 21/Mar/24 Answered by Rasheed.Sindhi last updated on 21/Mar/24 $${First}\:{digit}\:{can}\:{be}\:{occuied}\:{in}\:\mathrm{5}\:{ways} \\ $$$${Second}\:{digit}\:{can}\:{be}\:{occuied}\:{in}\:\mathrm{4}\:{ways} \\ $$$${Third}\:{digit}\:{can}\:{be}\:{occuied}\:{in}\:\mathrm{3}\:{ways}. \\ $$$${Total}\:{ways}:\:\mathrm{5}×\mathrm{4}×\mathrm{3}=\mathrm{60} \\ $$$$\left({d}\right)\:{is}\:{correct}.…

Question-205457

Question Number 205457 by BaliramKumar last updated on 21/Mar/24 Answered by Rasheed.Sindhi last updated on 21/Mar/24 $${x}+\mathrm{log}_{\mathrm{15}} \left(\mathrm{1}+\mathrm{3}^{{x}} \right)={x}\mathrm{log}_{\mathrm{15}} \mathrm{5}+\mathrm{log}_{\mathrm{15}} \mathrm{12} \\ $$$$\mathrm{log}_{\mathrm{15}} \mathrm{15}^{{x}} +\mathrm{log}_{\mathrm{15}}…

A-lim-x-0-sinx-x-3-

Question Number 205448 by mathlove last updated on 21/Mar/24 $${A}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{sinx}}{{x}^{\mathrm{3}} }=? \\ $$ Answered by namphamduc last updated on 21/Mar/24 $${A}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\left({x}\right)}{{x}^{\mathrm{3}} }=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\left({x}\right)}{{x}}.{x}^{\mathrm{4}}…