Menu Close

Author: Tinku Tara

x-4-bx-2-cx-s-let-x-2-px-t-p-2-x-2-2ptx-t-2-bx-2-cx-s-p-2-b-x-2-2pt-c-x-s-t-2-p-2-b-px-t-2pt-c-x-s-t-2-p-p-2-b-2pt-c-0-and-p-2-b-t-s-t-2-s-t-t-

Question Number 143011 by ajfour last updated on 08/Jun/21 $$\:\:{x}^{\mathrm{4}} +{bx}^{\mathrm{2}} +{cx}={s} \\ $$$${let}\:\:{x}^{\mathrm{2}} ={px}+{t} \\ $$$$\Rightarrow\:{p}^{\mathrm{2}} {x}^{\mathrm{2}} +\mathrm{2}{ptx}+{t}^{\mathrm{2}} +{bx}^{\mathrm{2}} +{cx}={s} \\ $$$$\Rightarrow\:\left({p}^{\mathrm{2}} +{b}\right){x}^{\mathrm{2}} +\left(\mathrm{2}{pt}+{c}\right){x}…

Hello-sirs-i-want-that-you-explain-me-how-we-solve-the-trigonometric-inequality-with-tangente-we-can-take-for-example-tan2x-3-i-can-solve-this-type-of-equality-but-not-the-inequality-Pleas

Question Number 77472 by mathocean1 last updated on 06/Jan/20 $$\mathrm{Hello}\:\mathrm{sirs}…\: \\ $$$$\mathrm{i}\:\mathrm{want}\:\mathrm{that}\:\mathrm{you}\:\mathrm{explain}\:\mathrm{me}\:\mathrm{how}\: \\ $$$$\:\mathrm{we}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{trigonometric} \\ $$$$\mathrm{inequality}\:\mathrm{with}\:\mathrm{tangente}.\: \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{take}\:\mathrm{for}\:\mathrm{example}\:\mathrm{tan2x}\geqslant\sqrt{\mathrm{3}} \\ $$$$\mathrm{i}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{type}\:\mathrm{of}\:\mathrm{equality} \\ $$$$\mathrm{but}\:\mathrm{not}\:\mathrm{the}\:\mathrm{inequality}!\:\mathrm{Please}\: \\ $$$$\mathrm{i}\:\mathrm{need}\:\mathrm{your}\:\mathrm{help}…\:\mathrm{Even}\:\mathrm{the}\:\mathrm{steps} \\…

dx-5-4x-x-2-is-this-answer-correct-ln-1-4-x-5-ln6-1-x-C-

Question Number 11937 by tawa last updated on 05/Apr/17 $$\int\frac{\mathrm{dx}}{\:\sqrt{\mathrm{5}\:+\:\mathrm{4x}\:−\:\mathrm{x}^{\mathrm{2}} }}\: \\ $$$$ \\ $$$$ \\ $$$$\mathrm{is}\:\mathrm{this}\:\mathrm{answer}\:\mathrm{correct}\:?\:\:\:\:\:\:\:\:\:\:\:−\mathrm{ln}\left[\mathrm{1}/\mathrm{4}\left(\mathrm{x}\:−\:\mathrm{5}\right)\:−\:\mathrm{ln6}\left(−\:\mathrm{1}\:−\:\mathrm{x}\right)\right]\:+\:\mathrm{C} \\ $$ Commented by ridwan balatif last updated…

7-6-8-7-9-8-n-n-1-84-n-

Question Number 11935 by uni last updated on 05/Apr/17 $$\frac{\mathrm{7}!}{\mathrm{6}!}+\frac{\mathrm{8}!}{\mathrm{7}!}+\frac{\mathrm{9}!}{\mathrm{8}!}+…\frac{\mathrm{n}!}{\left(\mathrm{n}−\mathrm{1}\right)!}=\mathrm{84}\:\Rightarrow\mathrm{n}=? \\ $$ Answered by bahmanfeshki1 last updated on 06/Apr/17 $${n}=\mathrm{14} \\ $$ Answered by ajfour…

1-y-z-x-z-z-y-y-x-2-x-2-z-x-xy-z-y-y-2-0-3-z-x-z-x-z-y-2z-y-

Question Number 143006 by mathdanisur last updated on 08/Jun/21 $$\mathrm{1}.\:{y}\frac{\partial{z}}{\partial{x}}\:+\:{z}\frac{\partial{z}}{\partial{y}}\:=\:\frac{{y}}{{x}} \\ $$$$\mathrm{2}.\:{x}^{\mathrm{2}} \frac{\partial{z}}{\partial{x}}\:−\:{xy}\frac{\partial{z}}{\partial{y}}\:+\:{y}^{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$\mathrm{3}.\:\begin{cases}{\frac{\partial{z}}{\partial{x}}\:=\:\frac{{z}}{{x}}}\\{\frac{\partial{z}}{\partial{y}}\:=\:\frac{\mathrm{2}{z}}{{y}}}\end{cases} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Let-a-and-b-be-two-numbers-x-be-the-single-arithmetic-mean-of-a-and-b-Show-that-the-sum-of-n-arithmetic-means-between-a-and-b-is-nx-

Question Number 11930 by 786786AM last updated on 05/Apr/17 $$\mathrm{Let}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{be}\:\mathrm{two}\:\mathrm{numbers},\:\mathrm{x}\:\mathrm{be}\:\mathrm{the}\:\mathrm{single}\:\mathrm{arithmetic}\:\mathrm{mean}\:\mathrm{of}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}. \\ $$$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{n}\:\mathrm{arithmetic}\:\mathrm{means}\:\mathrm{between}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{is}\:\mathrm{nx}. \\ $$ Answered by ajfour last updated on 05/Apr/17 $${A}_{{r}} =\:{a}+\frac{\left({b}−{a}\right)}{\left({n}+\mathrm{1}\right)}{r} \\ $$$$\underset{{r}=\mathrm{1}}…

Question-143003

Question Number 143003 by bramlexs22 last updated on 08/Jun/21 Answered by EDWIN88 last updated on 08/Jun/21 $$\left(\mathrm{1}\right)\:\mathrm{Since}\:\Delta\mathrm{ACE}\:\mathrm{and}\:\Delta\mathrm{ACB}\:\mathrm{share}\:\mathrm{the}\:\mathrm{same} \\ $$$$\mathrm{altitude},\mathrm{and}\:\mathrm{AE}=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{AB}\:,\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\Delta\mathrm{ACE}= \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\Delta\mathrm{ACB}\:.\: \\ $$$$\mathrm{By}\:\mathrm{Heron}\:\mathrm{formula}\: \\ $$$$\:\:\:\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\Delta\mathrm{ACB}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\sqrt{\frac{\mathrm{15}}{\mathrm{2}}\left(\frac{\mathrm{7}}{\mathrm{2}}\right)\left(\frac{\mathrm{5}}{\mathrm{2}}\right)\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}\:=\frac{\mathrm{5}\sqrt{\mathrm{7}}}{\mathrm{4}}…