Question Number 77424 by aliesam last updated on 06/Jan/20 $$\int_{\mathrm{0}} ^{\infty} {e}^{\left({e}^{{x}} −\mathrm{1}\right)^{{t}} \:\left({A}\right)} \:{dx} \\ $$$${A}\:{and}\:{t}\:{are}\:{constant} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 77425 by mr W last updated on 06/Jan/20 Commented by mr W last updated on 06/Jan/20 $${Given}:\:{r}_{{a}} ,\:{r}_{{b}} ,\:{r}_{{c}} \\ $$$${Find}:\:{r}=? \\ $$$$…
Question Number 77422 by john santu last updated on 06/Jan/20 $$\mathrm{can}\:\mathrm{solve}\:\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{17}} −\mathrm{1}}\:\mathrm{via}\: \\ $$$$\mathrm{elementary}\:\mathrm{calculus}? \\ $$ Commented by aliesam last updated on 07/Jan/20 $$\int\frac{\mathrm{1}}{{x}^{\mathrm{17}} −\mathrm{1}}\:{dx}…
Question Number 11887 by Peter last updated on 04/Apr/17 $$\frac{{dy}}{{dt}}\:+\mathrm{3}{t}^{\mathrm{2}} {y}\:=\:{t}^{\mathrm{2}\:} \:\:\:\:,\:{y}\left(\mathrm{0}\right)\:=\:\mathrm{1} \\ $$$${y}\left({t}\right)\:=\:? \\ $$ Answered by ajfour last updated on 04/Apr/17 $${when}\:\:\frac{{dy}}{{dt}}\:+{P}\:{y}\:={Q} \\…
Question Number 11886 by tawa last updated on 04/Apr/17 $$\int\mathrm{x}^{\mathrm{x}^{\mathrm{x}} } \:\mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 77420 by BK last updated on 06/Jan/20 Commented by mr W last updated on 06/Jan/20 $${the}\:{three}\:{triangles}\:{are}\:{similar}. \\ $$$${the}\:{radii}\:{of}\:{their}\:{incircles}\:{are}\:{in} \\ $$$${the}\:{same}\:{ratio}\:{as}\:{their}\:{side}\:{lengthes}, \\ $$$${therefore}\:{x}=\mathrm{5}. \\…
Question Number 11883 by tawa last updated on 03/Apr/17 $$\mathrm{Draw}\:\mathrm{the}\:\mathrm{structural}\:\mathrm{formula}\:\mathrm{of}\:\mathrm{the}\:\mathrm{compound} \\ $$$$\mathrm{2},\mathrm{2},\mathrm{7}\:-\:\mathrm{trimethyl}\:-\:\mathrm{4}\:-\:\left(\mathrm{1}\:-\:\mathrm{methylpropyl}\right)\:\mathrm{nonane} \\ $$ Answered by sandy_suhendra last updated on 04/Apr/17 Commented by tawa last…
Question Number 11880 by @ANTARES_VY last updated on 03/Apr/17 $$\boldsymbol{\mathrm{S}}_{\boldsymbol{\mathrm{ABCD}}} =\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\angle\boldsymbol{\mathrm{BAO}}=\angle\boldsymbol{\mathrm{MAO}}=\mathrm{22},\mathrm{5}° \\ $$$$\angle\boldsymbol{\mathrm{BCM}}=\angle\boldsymbol{\mathrm{DCM}} \\ $$$$\boldsymbol{\mathrm{S}}_{\boldsymbol{\mathrm{AOB}}} =? \\ $$ Terms of Service Privacy Policy…
Question Number 77412 by BK last updated on 06/Jan/20 Commented by Tony Lin last updated on 06/Jan/20 $$\zeta\left({s}\right)=\frac{\mathrm{1}}{\mathrm{1}^{{s}} }+\frac{\mathrm{1}}{\mathrm{2}^{{s}} }+\frac{\mathrm{1}}{\mathrm{3}^{{s}} }+\centerdot\centerdot\centerdot+\frac{\mathrm{1}}{{n}^{{s}} } \\ $$$$\zeta\left(\mathrm{2}\right)=\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}}…
Question Number 142945 by Rankut last updated on 07/Jun/21 $$\int_{\mathrm{0}} ^{\mathrm{0}.\mathrm{5}} \sqrt[{\mathrm{3}}]{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{3}} }\boldsymbol{{dx}} \\ $$$$ \\ $$ Answered by mindispower last updated on 07/Jun/21 $$\left(\mathrm{1}+{y}\right)^{{a}}…