Question Number 77340 by BK last updated on 05/Jan/20 Answered by mind is power last updated on 05/Jan/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{t}\right)=\mathrm{t}^{\mathrm{3}} +\mathrm{t}^{\mathrm{2}} +\mathrm{16t}+\mathrm{60} \\ $$$$\mathrm{z}=\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\mathrm{y}=\mathrm{fof}\left(\mathrm{x}\right)…
Question Number 11805 by tawa last updated on 01/Apr/17 $$\mathrm{x}^{\mathrm{y}} \:=\:\mathrm{y}^{\mathrm{x}} \:\:\:\: \\ $$$$\mathrm{x}^{\mathrm{2}} \:=\:\mathrm{y}^{\mathrm{3}} \\ $$$$\mathrm{find}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$ Answered by mrW1 last updated on…
Question Number 77339 by naka3546 last updated on 05/Jan/20 Commented by mr W last updated on 05/Jan/20 $$\int_{\mathrm{3}} ^{\mathrm{6}} {f}\left({x}\right){dx}=−\mathrm{2} \\ $$$${but}\:{i}\:{don}'{t}\:{think}\:{we}\:{can}\:{get} \\ $$$$\int_{\mathrm{3}} ^{\mathrm{5}}…
Question Number 142875 by Snail last updated on 06/Jun/21 $${Prove}\:{that}\:\zeta\left({s}\right)=\underset{{prime}} {\prod}\:\frac{\mathrm{1}}{\mathrm{1}−{p}^{−{s}} } \\ $$ Answered by Dwaipayan Shikari last updated on 06/Jun/21 $$\zeta\left({s}\right)=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{{s}} }+\frac{\mathrm{1}}{\mathrm{3}^{{s}} }+\frac{\mathrm{1}}{\mathrm{4}^{{s}}…
Question Number 77336 by Chi Mes Try last updated on 05/Jan/20 $${make}\:\boldsymbol{{x}}\:{subject}\:{of}\:{formula} \\ $$$$ \\ $$$$\boldsymbol{{x}}^{\boldsymbol{{y}}^{\boldsymbol{{x}}} } \:+\:\mathrm{8}\boldsymbol{{x}}\:\:=\:\:\boldsymbol{{y}} \\ $$ Commented by mr W last…
Question Number 11801 by 786786AM last updated on 01/Apr/17 $$\mathrm{pl}\:\mathrm{show}\:\mathrm{me}\:\mathrm{app}? \\ $$ Commented by FilupS last updated on 01/Apr/17 $$? \\ $$ Terms of Service…
Question Number 11800 by tawa last updated on 01/Apr/17 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum} \\ $$$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\left(\mathrm{n}\:+\:\mathrm{1}\right)\sqrt{\mathrm{n}}\:\:+\:\:\mathrm{n}\sqrt{\mathrm{n}\:+\:\mathrm{1}}} \\ $$ Answered by FilupS last updated on 01/Apr/17 $$\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)\sqrt{{n}}+{n}\sqrt{{n}+\mathrm{1}}}=\frac{\mathrm{1}}{\:\sqrt{{n}}}−\frac{\mathrm{1}}{\:\sqrt{{n}+\mathrm{1}}} \\…
Question Number 142869 by mathmax by abdo last updated on 06/Jun/21 $$\mathrm{calculate}\:\int_{−\infty} ^{+\infty} \:\:\frac{\mathrm{x}^{\mathrm{2}} \mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{3}\right)^{\mathrm{2}} } \\ $$ Answered by Ar Brandon last updated…
Question Number 11799 by tawa last updated on 01/Apr/17 $$\mathrm{Prove}\:\mathrm{using}\:\mathrm{the}\:\mathrm{density}\:\mathrm{of}\:\boldsymbol{\mathrm{Q}}\:\mathrm{in}\:\mathbb{R}\:\mathrm{that}\:\mathrm{every}\:\mathrm{real}\:\mathrm{number}\:\mathrm{x}\:\mathrm{is}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{of} \\ $$$$\mathrm{a}\:\mathrm{cauchy}\:\mathrm{sequence}\:\mathrm{of}\:\mathrm{rational}\:\mathrm{numbers}\:\left(\mathrm{r}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathrm{N}} .\:\mathrm{Give}\:\mathrm{a}\:\mathrm{sequence}\:\mathrm{of}\:\mathrm{irrational}\: \\ $$$$\mathrm{numbers}\:\left(\mathrm{S}_{\mathrm{n}} \right)\:\mathrm{such}\:\mathrm{that}\:\mathrm{S}_{\mathrm{n}} \:\rightarrow\:\mathrm{x}. \\ $$ Terms of Service Privacy Policy…
Question Number 77335 by aliesam last updated on 05/Jan/20 Commented by aliesam last updated on 05/Jan/20 Commented by msup trace by abdo last updated on…