Menu Close

Author: Tinku Tara

discrete-mathematics-prove-that-n-1-1-F-2n-1-1-5-5-2-F-n-fibonacci-sequence-

Question Number 142723 by mnjuly1970 last updated on 04/Jun/21 $$\:\:\:\:\:\:\:\:…….\:{discrete}\:\:…..\:\:{mathematics}……. \\ $$$$\:\:\:\:{prove}\:{that}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{F}_{\mathrm{2}{n}+\mathrm{1}} −\mathrm{1}}\overset{?} {=}\frac{\mathrm{5}−\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:{F}_{{n}} \:::\:{fibonacci}\:\:{sequence}… \\ $$ Answered by…

find-the-particular-solution-to-the-differential-equation-y-4-21y-2-100y-4-8-29t-e-2t-solution-please-

Question Number 142719 by gsk2684 last updated on 04/Jun/21 $$\mathrm{find}\:\mathrm{the}\:\mathrm{particular}\:\mathrm{solution} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\mathrm{y}^{\left(\mathrm{4}\right)} +\mathrm{21y}^{\left(\mathrm{2}\right)} −\mathrm{100y}=\mathrm{4}\left(\mathrm{8}−\mathrm{29t}\right)\mathrm{e}^{−\mathrm{2t}} . \\ $$$$\mathrm{solution}\:\mathrm{please}. \\ $$ Commented by gsk2684 last…

given-a-quadratic-equation-3x-2-x-t-2-4t-3-0-has-roots-sin-and-cos-find-the-value-t-2-4t-5-

Question Number 77180 by jagoll last updated on 04/Jan/20 $$ \\ $$$$ \\ $$$$\mathrm{given}\:\mathrm{a}\:\mathrm{quadratic}\:\mathrm{equation}\: \\ $$$$\mathrm{3x}^{\mathrm{2}} −\mathrm{x}+\left(\mathrm{t}^{\mathrm{2}} −\mathrm{4t}+\mathrm{3}\right)=\mathrm{0}\:\mathrm{has} \\ $$$$\mathrm{roots}\:\mathrm{sin}\:\alpha\:\mathrm{and}\:\mathrm{cos}\:\alpha.\:\mathrm{find}\:\mathrm{the}\: \\ $$$$\mathrm{value}\:\sqrt{\mathrm{t}^{\mathrm{2}} −\mathrm{4t}+\mathrm{5}}\:. \\ $$…

I-0-c-2-sin-2-d-tan-a-2-b-2-a-2-gt-b-2-c-2-gt-1-Perimeter-of-ellipse-4-0-pi-2-a-2-a-2-b-2-sin-2-d-is-that-right-sir-

Question Number 142708 by ajfour last updated on 05/Jun/21 $$\:{I}=\int_{\mathrm{0}} ^{\:\:\alpha} \sqrt{{c}^{\mathrm{2}} −\mathrm{sin}\:^{\mathrm{2}} \theta}{d}\theta \\ $$$$\:\mathrm{tan}\:\alpha=\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:\:,\:{a}^{\mathrm{2}} >{b}^{\mathrm{2}} \:\:,\:{c}^{\mathrm{2}} >\mathrm{1} \\ $$$${Perimeter}\:{of}\:{ellipse} \\ $$$$=\mathrm{4}\int_{\mathrm{0}}…