Menu Close

Author: Tinku Tara

Calculate-the-side-of-an-equilateral-triangle-whose-vertices-are-situated-on-three-parallel-coplanar-lines-knowing-that-a-and-b-are-the-distances-of-the-parallel-line-to-the-others-

Question Number 76974 by Maclaurin Stickker last updated on 02/Jan/20 $${Calculate}\:{the}\:{side}\:{of}\:{an}\:{equilateral} \\ $$$${triangle}\:{whose}\:{vertices}\:{are}\:{situated} \\ $$$${on}\:{three}\:{parallel}\:{coplanar}\:{lines}, \\ $$$${knowing}\:{that}\:\boldsymbol{{a}}\:{and}\:\boldsymbol{{b}}\:{are}\:{the}\:{distances} \\ $$$${of}\:{the}\:{parallel}\:{line}\:{to}\:{the}\:{others}. \\ $$ Answered by mr W…

In-a-ABC-triangle-the-side-a-6-and-c-2-b-2-66-Calculate-the-projections-of-sides-b-and-c-on-a-

Question Number 76973 by Maclaurin Stickker last updated on 02/Jan/20 $${In}\:{a}\:{ABC}\:{triangle}\:{the}\:{side}\:\boldsymbol{{a}}=\mathrm{6}\:{and} \\ $$$$\boldsymbol{{c}}^{\mathrm{2}} −\boldsymbol{{b}}^{\mathrm{2}} =\mathrm{66}.\:{Calculate}\:{the}\:{projections} \\ $$$${of}\:{sides}\:\boldsymbol{{b}}\:{and}\:\boldsymbol{{c}}\:{on}\:\boldsymbol{{a}}. \\ $$ Answered by jagoll last updated on…

0-4-sinx-cos-7-x-dx-solves-

Question Number 11436 by @ANTARES_VY last updated on 26/Mar/17 $$ \\ $$$$\underset{\mathrm{0}} {\overset{\frac{\boldsymbol{\pi}}{\mathrm{4}}} {\int}}\boldsymbol{\mathrm{sinx}}×\boldsymbol{\mathrm{cos}}^{\mathrm{7}} \boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{dx}}. \\ $$$$\boldsymbol{\mathrm{solves}}… \\ $$ Commented by FilupS last updated on…

Question-142504

Question Number 142504 by rs4089 last updated on 01/Jun/21 Answered by mnjuly1970 last updated on 01/Jun/21 $$\:\:\frac{\pi^{\mathrm{2}} }{\mathrm{12}}{ln}\left(\mathrm{2}\right)−\frac{\mathrm{5}}{\mathrm{16}}\:\zeta\:\left(\mathrm{3}\right)\:….\checkmark \\ $$ Terms of Service Privacy Policy…

for-r-1-show-that-the-arc-length-between-3pi-1-and-npi-1-where-n-gt-3-is-aproxiately-equal-to-the-length-of-the-line-y-3pi-1-between-the-same-bounds-Or-show-otherwise-

Question Number 11433 by FilupS last updated on 26/Mar/17 $$\mathrm{for}\:{r}=\frac{\mathrm{1}}{\theta},\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{arc}\:\mathrm{length}\:\mathrm{between} \\ $$$$\theta=\mathrm{3}\pi^{−\mathrm{1}} \:\:\mathrm{and}\:\theta={n}\pi^{−\mathrm{1}} \:\:\:\left(\mathrm{where}\:\:{n}>\mathrm{3}\right)\:\:\mathrm{is}\:\mathrm{aproxiately} \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{line}\:{y}=\mathrm{3}\pi^{−\mathrm{1}} \\ $$$$\mathrm{between}\:\mathrm{the}\:\mathrm{same}\:\mathrm{bounds}.\:\mathrm{Or}\:\mathrm{show}\:\mathrm{otherwise}. \\ $$$$ \\ $$ Commented by FilupS…