Menu Close

Author: Tinku Tara

In-a-certain-urn-there-are-3-blue-2red-and-5-yellow-marbles-Calculate-probability-that-atmost-2-marbles-will-be-red-if-3-marbles-are-drawn-without-replacement-

Question Number 142489 by jlewis last updated on 01/Jun/21 $$\mathrm{In}\:\:\mathrm{a}\:\mathrm{certain}\:\mathrm{urn}\:\mathrm{there}\:\mathrm{are}\:\mathrm{3}\:\mathrm{blue}, \\ $$$$\mathrm{2red}\:\mathrm{and}\:\mathrm{5}\:\mathrm{yellow}\:\mathrm{marbles}. \\ $$$$\mathrm{Calculate}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{atmost} \\ $$$$\mathrm{2}\:\mathrm{marbles}\:\mathrm{will}\:\mathrm{be}\:\mathrm{red}\:\mathrm{if}\:\mathrm{3}\:\mathrm{marbles} \\ $$$$\:\mathrm{are}\:\mathrm{drawn}\:\mathrm{without}\:\mathrm{replacement} \\ $$ Commented by mr W last…

x-p-1-x-q-dx-p-q-2n-N-p-lt-q-

Question Number 76955 by behi83417@gmail.com last updated on 01/Jan/20 $$\int\:\:\frac{\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{p}}} }{\:\sqrt{\mathrm{1}\pm\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{q}}} }}\:\boldsymbol{\mathrm{dx}}=?\:\:\:\:\left[\boldsymbol{\mathrm{p}}+\boldsymbol{\mathrm{q}}=\mathrm{2}\boldsymbol{\mathrm{n}}\in\boldsymbol{\mathrm{N}},\boldsymbol{\mathrm{p}}<\boldsymbol{\mathrm{q}}\right] \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

show-that-1-2017-2018-2019-2020-N-

Question Number 76952 by ~blr237~ last updated on 01/Jan/20 $$\mathrm{show}\:\mathrm{that}\: \\ $$$$\sqrt{\mathrm{1}+\:\mathrm{2017}×\mathrm{2018}×\mathrm{2019}×\mathrm{2020}\:}\:\in\:\mathbb{N} \\ $$ Answered by MJS last updated on 01/Jan/20 $$\mathrm{1}+{x}\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)\left({x}+\mathrm{3}\right)= \\ $$$$={x}^{\mathrm{4}} +\mathrm{6}{x}^{\mathrm{3}}…

A-log-5x-1-3x-5-B-1-log-5x-1-x-1-If-A-B-1-x-must-be-

Question Number 11417 by Joel576 last updated on 25/Mar/17 $${A}\:=\:\mathrm{log}\:\left(\mathrm{5}{x}\:+\:\mathrm{1}\right)\left(\mathrm{3}{x}\:+\:\mathrm{5}\right) \\ $$$${B}\:=\:\frac{\mathrm{1}}{\mathrm{log}\:\left(\mathrm{5}{x}+\:\mathrm{1}\right)\left({x}\:−\:\mathrm{1}\right)} \\ $$$$\mathrm{If}\:{A}\:+\:{B}\:\geqslant\:\mathrm{1},\:{x}\:\mathrm{must}\:\mathrm{be}\:… \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-11416

Question Number 11416 by anisa last updated on 25/Mar/17 Answered by Joel576 last updated on 25/Mar/17 $$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:{x}}{\mathrm{2}{x}\:\mathrm{sin}\:\mathrm{2}{x}} \\ $$$$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}}{\mathrm{2}}\:.\:\frac{\mathrm{sin}\:{x}}{{x}}\:.\:\frac{\mathrm{sin}\:{x}}{\mathrm{sin}\:\mathrm{2}{x}} \\ $$$$=\:\mathrm{1}\:.\:\mathrm{1}\:.\:\frac{\mathrm{1}}{\mathrm{2}} \\…

Question-76948

Question Number 76948 by Master last updated on 01/Jan/20 Answered by mr W last updated on 02/Jan/20 $${let}\:\alpha=\angle{A} \\ $$$$\angle{B}=\frac{\pi}{\mathrm{2}}−\frac{\alpha}{\mathrm{2}} \\ $$$${AB}={AC}=\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{sin}\:\frac{\alpha}{\mathrm{2}}} \\ $$$$\left(\sqrt{\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{1}^{\mathrm{2}}…

Find-the-length-of-the-arc-of-the-hyperbolic-spiral-r-a-lying-between-r-a-and-r-2a-

Question Number 11413 by agni5 last updated on 24/Mar/17 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{arc}\:\mathrm{of}\:\mathrm{the}\:\mathrm{hyperbolic} \\ $$$$\mathrm{spiral}\:\:\mathrm{r}\theta=\mathrm{a}\:\:\mathrm{lying}\:\mathrm{between}\:\:\mathrm{r}=\mathrm{a}\:\:\mathrm{and}\: \\ $$$$\mathrm{r}=\mathrm{2a}. \\ $$ Answered by mrW1 last updated on 26/Mar/17 $${r}=\frac{{a}}{\theta} \\…