Menu Close

Author: Tinku Tara

3x-x-3-1-3-dx-

Question Number 205294 by depressiveshrek last updated on 15/Mar/24 $$\int\sqrt[{\mathrm{3}}]{\mathrm{3}{x}−{x}^{\mathrm{3}} }{dx} \\ $$ Answered by Frix last updated on 15/Mar/24 $$\int\left(\mathrm{3}{x}−{x}^{\mathrm{3}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} {dx}\:\overset{{t}=\frac{{x}^{\mathrm{2}} }{\mathrm{3}}} {=}\:\frac{\mathrm{3}}{\mathrm{2}}\int{t}^{−\frac{\mathrm{1}}{\mathrm{3}}}…

Question-205306

Question Number 205306 by peter frank last updated on 15/Mar/24 Answered by A5T last updated on 15/Mar/24 $$\mathrm{2}\left(\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{xy}\right)=\mathrm{450}\Rightarrow\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{xy}=\mathrm{225} \\ $$$$\Rightarrow{y}=\frac{\mathrm{225}−\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{4}{x}}\Rightarrow{v}=\mathrm{3}{x}^{\mathrm{2}} {y}=\frac{\mathrm{3}{x}\left(\mathrm{225}−\mathrm{3}{x}^{\mathrm{2}} \right)}{\mathrm{4}}…

lim-n-a-2a-na-n-2-where-a-R-and-x-is-the-floor-of-x-R-

Question Number 205307 by universe last updated on 15/Mar/24 $$\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\lfloor{a}\rfloor+\lfloor\mathrm{2}{a}\rfloor+…+\lfloor{na}\rfloor}{{n}^{\mathrm{2}} }\:\mathrm{where}\:{a}\in\mathbb{R} \\ $$$$\:\:\:\mathrm{and}\:\lfloor{x}\rfloor\:\mathrm{is}\:\mathrm{the}\:\mathrm{floor}\:\mathrm{of}\:\mathrm{x}\:\in\:\mathbb{R} \\ $$ Commented by Frix last updated on 15/Mar/24 $$\mathrm{Just}\:\mathrm{guessing}: \\…

Question-205315

Question Number 205315 by cherokeesay last updated on 15/Mar/24 Answered by MM42 last updated on 16/Mar/24 $$\left[{x}\right]+\left[{x}−\frac{\mathrm{1}}{\mathrm{2}}\right]=\left[\mathrm{2}{x}\right]−\mathrm{1} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\left[{x}\right]} \left(\left[\mathrm{2}{x}\right]−\mathrm{1}\right){dx}=\left(\left[\mathrm{2}{x}\right]−\mathrm{1}\right){x}\mid_{\mathrm{0}} ^{\left[{x}\right]} \\ $$$$=\left(\left[\mathrm{2}{x}\right]−\mathrm{1}\right)\left[{x}\right] \\…