Question Number 76779 by mathmax by abdo last updated on 30/Dec/19 $${calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{x}^{\mathrm{2}} {cosx}}{\mathrm{3}+{sin}^{\mathrm{2}} {x}}{dx} \\ $$ Commented by mathmax by abdo last updated…
Question Number 76777 by aliesam last updated on 30/Dec/19 $${prove}\:{that} \\ $$$$ \\ $$$$\sqrt[{\mathrm{3}}]{{cos}\left(\mathrm{40}°\right)}\:+\:\sqrt[{\mathrm{3}}]{{cos}\left(\mathrm{80}°\right)}\:−\:\sqrt[{\mathrm{3}}]{{cos}\left(\mathrm{20}°\right)}\:=\sqrt[{\mathrm{3}}]{\frac{\mathrm{3}}{\mathrm{2}}\left(\sqrt[{\mathrm{3}}]{\mathrm{9}}−\mathrm{2}\right)} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 142309 by qaz last updated on 29/May/21 $$\underset{\mathrm{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\mathrm{x}^{\left(\mathrm{sin}\:\mathrm{x}\right)^{\mathrm{x}} } −\left(\mathrm{sin}\:\mathrm{x}\right)^{\mathrm{x}^{\mathrm{sin}\:\mathrm{x}} } }{\mathrm{x}^{\mathrm{3}} }=? \\ $$ Answered by mnjuly1970 last updated on…
Question Number 142308 by qaz last updated on 29/May/21 $$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{lnlnln}\left[\mathrm{x}+\left(\mathrm{1}+\mathrm{x}\right)^{\frac{\left(\mathrm{1}+\mathrm{x}\right)^{\frac{\mathrm{1}}{\mathrm{x}}} }{\mathrm{x}}} \right]+\mathrm{x}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{e}^{\mathrm{e}+\mathrm{1}} }\right)}{\mathrm{x}^{\mathrm{2}} }=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 11238 by Joel576 last updated on 18/Mar/17 $${f}\left(\mathrm{1}\:−\:\mathrm{2}{x}\right)\:=\:{g}\left({x}\:+\:\mathrm{3}\right) \\ $$$${f}^{−\mathrm{1}} \left({x}\right)\:=\:? \\ $$$$ \\ $$$$\left(\mathrm{A}\right)\:\mathrm{7}\:−\:\mathrm{2}{g}^{−\mathrm{1}} \left({x}\right) \\ $$$$\left(\mathrm{B}\right)\:\mathrm{2}{g}^{−\mathrm{1}} \left({x}\right)\:+\:\mathrm{7} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{2}{g}^{−\mathrm{1}} \left({x}\right)\:−\:\mathrm{5} \\…
Question Number 76772 by Master last updated on 30/Dec/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 142310 by mathocean1 last updated on 29/May/21 $$\mathrm{Show}\:\mathrm{that}\:\mathrm{for}\:\mathrm{n}\in\:\mathbb{N},\:\mathrm{A}_{\mathrm{n}} =\mathrm{n}^{\mathrm{2}} \left(\mathrm{n}^{\mathrm{2}} −\mathrm{1}\right) \\ $$$$\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{12} \\ $$ Answered by MJS_new last updated on 29/May/21 $${A}_{\mathrm{6}{k}}…
Question Number 142305 by anonymo last updated on 29/May/21 Answered by Olaf_Thorendsen last updated on 01/Jun/21 $$\left(\mathrm{1}+{i}\right)^{\mathrm{80}} \:=\:\underset{{p}=\mathrm{0}} {\overset{\mathrm{80}} {\sum}}\mathrm{C}_{{p}} ^{\mathrm{80}} {i}^{{p}} \\ $$$$\left(\mathrm{1}+{i}\right)^{\mathrm{80}} \:=\:\underset{{k}=\mathrm{0}}…
Question Number 76770 by Master last updated on 30/Dec/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 142304 by mathsuji last updated on 29/May/21 Terms of Service Privacy Policy Contact: info@tinkutara.com