Question Number 10876 by Saham last updated on 28/Feb/17 $$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \int_{\:\mathrm{x}} ^{\:\sqrt{\mathrm{x}}} \:\left(\mathrm{x}\:+\:\mathrm{y}^{\mathrm{5}} \right)\:\mathrm{dy}\:\mathrm{dx} \\ $$ Answered by fariraihmudzengerere75@gmail.c last updated on 28/Feb/17 $${Answer}\:.\:\int_{\mathrm{0}}…
Question Number 141945 by Sammie last updated on 25/May/21 $$\mathrm{f}\left(\mathrm{x}\right)=\sqrt[{\mathrm{3}}]{\left(\mid\mathrm{x}\mid−\mathrm{1}\right)\left(\mid\mathrm{x}\mid−\mathrm{2}\right)^{\mathrm{2}} } \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{of}\:\mathrm{f} \\ $$ Answered by MJS_new last updated on 25/May/21 $$\mathrm{if}\:\mathrm{we}\:\mathrm{use}\:\sqrt[{\mathrm{3}}]{−{t}}=−\sqrt[{\mathrm{3}}]{{t}}\:\forall{t}\in\mathbb{R}^{+} \Rightarrow\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{defined}\:\forall{x}\in\mathbb{R} \\…
Question Number 141944 by cesarL last updated on 25/May/21 $$\int{x}^{\mathrm{2}} \sqrt{\mathrm{9}{x}^{\mathrm{2}} +\mathrm{25}}{dx} \\ $$ Answered by MJS_new last updated on 25/May/21 $$\int{x}^{\mathrm{2}} \sqrt{\mathrm{9}{x}^{\mathrm{2}} +\mathrm{25}}{dx}= \\…
Question Number 10874 by Saham last updated on 28/Feb/17 $$\mathrm{If}\:\:\mathrm{f}\left(\mathrm{x}\:+\:\mathrm{3}\right)\:=\:\mathrm{2x}^{\mathrm{2}} \:−\:\mathrm{3x}\:+\:\mathrm{5}.\:\mathrm{find}\:\:\:\mathrm{f}\left(\mathrm{5}\right) \\ $$ Answered by ridwan balatif last updated on 28/Feb/17 $$\mathrm{way}\:\mathrm{1} \\ $$$$\mathrm{let}:\:\mathrm{x}+\mathrm{3}=\mathrm{a}\rightarrow\mathrm{a}−\mathrm{3}=\mathrm{x},\mathrm{then} \\…
Question Number 141947 by mnjuly1970 last updated on 25/May/21 $$ \\ $$$$\:\:\:\:\:\:\Omega:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\sqrt{\mathrm{1}−{x}}\:{arcsin}\left({x}\right)}{\:\sqrt{\mathrm{1}+{x}}}{dx}=?? \\ $$ Answered by qaz last updated on 25/May/21 $$\Omega=\int_{\mathrm{0}} ^{\mathrm{1}}…
Question Number 10873 by Saham last updated on 28/Feb/17 $$\mathrm{without}\:\mathrm{using}\:\mathrm{calculator}\:\mathrm{or}\:\mathrm{table},\:\mathrm{find}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{of}\:\:: \\ $$$$\mathrm{sin}\left[\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right] \\ $$ Answered by fariraihmudzengerere75@gmail.c last updated on 28/Feb/17 $${Answer}\:\:\:.\:\mathrm{sin}\:\left[\mathrm{tan}^{−\mathrm{1}} \left({x}\right)\right]={x}/\sqrt{\left(\mathrm{1}+\boldsymbol{\mathrm{x}}\frac{\mathrm{2}}{}\right)} \\…
Question Number 141946 by mnjuly1970 last updated on 27/May/21 $$\:\:\:\:\:\:\:\:\:\:….{nice}\:\:\:{calculus}… \\ $$$$\:\:\:\:{lim}_{{n}\rightarrow\infty} {n}\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{\mathrm{2}{x}}{\mathrm{1}+{x}}\right)^{{n}} =??? \\ $$ Answered by mnjuly1970 last updated on 29/May/21…
Question Number 10872 by Saham last updated on 28/Feb/17 $$\mathrm{In}\:\mathrm{a}\:\mathrm{cultural}\:\mathrm{gathering}\:\mathrm{of}\:\mathrm{400}\:\mathrm{people},\:\mathrm{there}\:\mathrm{are}\:\mathrm{270}\:\mathrm{men}\:\mathrm{and}\:\mathrm{200} \\ $$$$\mathrm{musicians}.\:\mathrm{Of}\:\mathrm{the}\:\mathrm{latter},\:\mathrm{80}\:\mathrm{are}\:\mathrm{singers}.\:\mathrm{60}\:\mathrm{of}\:\mathrm{the}\:\mathrm{women}\:\mathrm{are}\:\mathrm{not}\:\:\mathrm{musicians} \\ $$$$\mathrm{and}\:\mathrm{220}\:\mathrm{of}\:\mathrm{the}\:\mathrm{men}\:\mathrm{are}\:\mathrm{not}\:\mathrm{singers}.\:\mathrm{How}\:\mathrm{many}\:\mathrm{of}\:\mathrm{the}\:\mathrm{women}\:\mathrm{are} \\ $$$$\mathrm{musicians}\:\mathrm{but}\:\mathrm{not}\:\mathrm{singers}.\:\mathrm{if}\:\mathrm{there}\:\mathrm{are}\:\mathrm{150}\:\mathrm{singers}\:\mathrm{altogether}\:\mathrm{and}\: \\ $$$$\mathrm{40}\:\mathrm{men}\:\mathrm{are}\:\mathrm{both}\:\mathrm{musicians}\:\mathrm{and}\:\mathrm{singers}. \\ $$ Answered by Abdulhalim Ghadady last…
Question Number 76407 by TawaTawa last updated on 27/Dec/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 141943 by cesarL last updated on 25/May/21 $$\int\frac{{dx}}{{x}\sqrt{\mathrm{16}−\mathrm{4}{x}^{\mathrm{2}} }} \\ $$ Answered by MJS_new last updated on 25/May/21 $$\int\frac{{dx}}{{x}\sqrt{\mathrm{16}−\mathrm{4}{x}^{\mathrm{2}} }}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dx}}{{x}\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{\mathrm{2}+\sqrt{\mathrm{4}−{x}^{\mathrm{2}}…