Question Number 76397 by MJS last updated on 27/Dec/19 $$\mathrm{solve}\:\mathrm{for}\:{z}\in\mathbb{C} \\ $$$$\left[{z}={a}+{b}\mathrm{i};\:\bar {{z}}={a}−{b}\mathrm{i};\:{r}\in\mathbb{R}\right] \\ $$$$\sqrt{{r}^{\mathrm{2}} −{z}^{\mathrm{2}} }=\bar {{z}} \\ $$$$\sqrt{{r}^{\mathrm{2}} +{z}^{\mathrm{2}} }=\bar {{z}} \\ $$…
Question Number 141929 by mathmax by abdo last updated on 24/May/21 $$\mathrm{find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\mathrm{e}^{−\left(\mathrm{t}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{2}} }\right)} \mathrm{dt} \\ $$ Answered by Dwaipayan Shikari last updated…
Question Number 141931 by mathmax by abdo last updated on 24/May/21 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{2x}} \mathrm{ln}\left(\mathrm{1}+\mathrm{e}^{\mathrm{3x}} \right)\mathrm{dx} \\ $$ Answered by mindispower last updated on 24/May/21…
Question Number 141930 by mathmax by abdo last updated on 24/May/21 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\left(\mathrm{x}^{\mathrm{3}} \:+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }\right)} \mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 10856 by Joel576 last updated on 27/Feb/17 $$\mathrm{Find}\:\mathrm{all}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{that}\:\mathrm{fulfilled}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{below} \\ $$$$\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{{x}}\right)^{{x}\:+\:\mathrm{1}} \:=\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{2013}}\right)^{\mathrm{2013}} \\ $$ Answered by DrDaveR last updated on 12/Mar/17 $${Just}\:−\mathrm{2014}.\:{There}\:{can}\:{be}\:{no}\:{positve}\:{solution}.\:{The}\:{function}\:{is} \\ $$$${monotinically}\:{decreasing}\:\:{so}\:{there}\:{could}\:{be}\:{one}\:{negative}\:…
Question Number 10855 by Joel576 last updated on 27/Feb/17 $$\frac{\mathrm{3}}{\mathrm{1}!+\mathrm{2}!+\mathrm{3}!}\:+\:\frac{\mathrm{4}}{\mathrm{2}!+\mathrm{3}!+\mathrm{4}!}\:+\:\frac{\mathrm{5}}{\mathrm{3}!+\mathrm{4}!+\mathrm{5}!}\:+\:…\:+\:\frac{\mathrm{2016}}{\mathrm{2014}!+\mathrm{2015}!+\mathrm{2016}!}\:=\:? \\ $$ Answered by nume1114 last updated on 28/Feb/17 $$\:\:\:\:\frac{\mathrm{3}}{\mathrm{1}!+\mathrm{2}!+\mathrm{3}!}+\frac{\mathrm{4}}{\mathrm{2}!+\mathrm{3}!+\mathrm{4}!}+…+\frac{\mathrm{2016}}{\mathrm{2014}!+\mathrm{2015}!+\mathrm{2016}!} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\mathrm{2014}} {\sum}}\frac{{n}+\mathrm{2}}{{n}!+\left({n}+\mathrm{1}\right)!+\left({n}+\mathrm{2}\right)!} \\…
Question Number 141924 by Study last updated on 24/May/21 $${cos}\left({x}−\mathrm{180}\right)=? \\ $$ Commented by MJS_new last updated on 24/May/21 $$−\mathrm{cos}\:{x} \\ $$ Answered by mathmax…
Question Number 10854 by Joel576 last updated on 27/Feb/17 $${f}\::\:\mathbb{R}\:\rightarrow\:\mathbb{R} \\ $$$${f}\left({x}\:.\:{f}\left({x}\right)\:+\:{f}\left({y}\right)\right)\:=\:\left({f}\left({x}\right)\right)^{\mathrm{2}} \:+\:{y}\:\:\:\:\:\:\:\:\:\:{x},{y}\:\in\:\mathbb{R} \\ $$$$ \\ $$$${f}\left({x}\right)\:=\:?? \\ $$ Answered by bahmanfeshki last updated on…
Question Number 10853 by geovane10math last updated on 27/Feb/17 $$\left({x}\:+\:{y}\right)^{{n}} \:=\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{x}^{{k}} {y}^{{n}−{k}} \\ $$$$\left({x}\:−\:{y}\right)^{{n}} \:=\:??????? \\ $$ Answered by mrW1 last updated on…
Question Number 76386 by Maclaurin Stickker last updated on 27/Dec/19 $${Are}\:{give}\:{two}\:{parallel}\:{lines}\:{and}\:{a}\:{point} \\ $$$${A}\:{is}\:{given}\:{between}\:{them},\:{and}\:{the} \\ $$$${distance}\:{from}\:{A}\:{to}\:{the}\:{lines}\:{are}\: \\ $$$$\boldsymbol{{a}}\:{and}\:\boldsymbol{{b}}.\:{Determine}\:{the}\:{cathetus}\:{of} \\ $$$${right}−{angled}\:{triangle}\:{in}\:{A}\:{knowing} \\ $$$${that}\:{the}\:{other}\:{vertices}\:{belong}\:{to} \\ $$$${the}\:{parallel}\:{lines}\:{and}\:{the}\:{area}\:{of} \\ $$$${the}\:{triangle}\:{is}\:{equal}\:{to}\:\boldsymbol{{k}}^{\mathrm{2}}…