Question Number 141749 by Huy last updated on 23/May/21 $$\begin{cases}{\mathrm{x}^{\mathrm{2}} −\mathrm{y}+\sqrt{\mathrm{y}^{\mathrm{2}} +\mathrm{5}}=\mathrm{xy}−\sqrt{\mathrm{x}−\mathrm{1}}}\\{\mathrm{y}^{\mathrm{2}} +\sqrt{\mathrm{xy}+\mathrm{2}}=\mathrm{2}\left(\mathrm{x}+\mathrm{y}\right)}\end{cases} \\ $$$$\mathrm{Find}\:\mathrm{x},\mathrm{y} \\ $$ Answered by MJS_new last updated on 23/May/21 $$\mathrm{assuming}\:\mathrm{a}\:“\mathrm{nice}''\:\mathrm{solution}\:\mathrm{I}\:\mathrm{tried}…
Question Number 76214 by Emmanuel_N last updated on 25/Dec/19 $$\mathrm{x}^{\mathrm{2}} +\mathrm{2x}−\mathrm{9}+\frac{\mathrm{9}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$$$\mathrm{please} \\ $$ Answered by benjo last updated on 25/Dec/19 $$\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \:−\mathrm{10}+\mathrm{9}/\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}}…
Question Number 141750 by Algoritm last updated on 23/May/21 Answered by cherokeesay last updated on 23/May/21 $$\frac{\pi\left(\mathrm{2}{r}\right)^{\mathrm{2}} }{\mathrm{4}}\:−\:\pi{r}^{\mathrm{2}} \:\Leftrightarrow\:\frac{\pi\mathrm{4}{r}^{\mathrm{2}} }{\mathrm{4}}\:−\:\pi{r}^{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$\frac{{B}_{{Area}} }{{R}_{{Area}} }\:=\:\mathrm{1}…
Question Number 76213 by Emmanuel_N last updated on 25/Dec/19 $$\left(\frac{\mathrm{1}}{\mathrm{64}}×\mathrm{5}^{−\mathrm{3}} \right)^{−\frac{\mathrm{1}}{\mathrm{3}}} \\ $$ Answered by MJS last updated on 25/Dec/19 $$=\left(\mathrm{4}^{−\mathrm{3}} ×\mathrm{5}^{−\mathrm{3}} \right)^{−\frac{\mathrm{1}}{\mathrm{3}}} =\left(\mathrm{20}^{−\mathrm{3}} \right)^{−\frac{\mathrm{1}}{\mathrm{3}}}…
Question Number 10675 by niraj last updated on 22/Feb/17 $${given}\:{that}\:{x},{y}\in{R}\:{solve}. \\ $$$$\left(\mathrm{1}\right)\:\left({x}+\mathrm{2}{y}\right)+{i}\left(\mathrm{2}{x}−\mathrm{3}{y}\right)=\mathrm{5}−\mathrm{4}{i} \\ $$$$\left(\mathrm{2}\right)\:\left({x}+{iy}\right)×\left(\mathrm{7}−\mathrm{5}{i}\right)=\mathrm{9}+\mathrm{4}{i} \\ $$ Commented by niraj last updated on 22/Feb/17 $${sir}\:{answer}\:{please} \\…
Question Number 141747 by mathsuji last updated on 23/May/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 10671 by Saham last updated on 22/Feb/17 $$\underset{\mathrm{n}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{5}\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{n}\:−\:\mathrm{1}} \\ $$ Answered by FilupS last updated on 22/Feb/17 $${S}=\mathrm{5}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{4}^{{n}−\mathrm{1}} }…
Question Number 76207 by mr W last updated on 25/Dec/19 $${if}\:{a}_{\mathrm{1}} =\mathrm{1}\:{and}\:{a}_{{n}+\mathrm{1}} =\mathrm{3}{a}_{{n}} +{n}^{\mathrm{2}} \\ $$$${find}\:{a}_{{n}} =? \\ $$ Answered by mind is power last…
Question Number 10670 by FilupS last updated on 22/Feb/17 $$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\zeta\left({s}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{n}^{−{s}} =\underset{{p}\in\mathbb{P}} {\overset{\infty} {\prod}}\left(\mathrm{1}−{p}^{−{s}} \right)^{−\mathrm{1}} \\ $$ Terms of Service Privacy Policy…
Question Number 10669 by mrW1 last updated on 22/Feb/17 $$\int\sqrt{{a}^{\mathrm{2}} −\mathrm{cos}^{\mathrm{2}} \:{x}\:}{dx}=?\:\:\:\left({a}\geqslant\mathrm{1}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com