Question Number 141730 by mathdanisur last updated on 22/May/21 $${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{xy}=\mathrm{9} \\ $$$${y}^{\mathrm{2}} +{z}^{\mathrm{2}} +{yz}=\mathrm{16} \\ $$$${x}^{\mathrm{2}} +{z}^{\mathrm{2}} +{xz}=\mathrm{25} \\ $$$${xy}+{yz}+{xz}=? \\ $$ Commented…
Question Number 76193 by abdomathmax last updated on 25/Dec/19 $${calculate}\:\int\:\:\left({x}^{\mathrm{2}} −\mathrm{1}\right){sh}\left(\mathrm{3}{x}\right){dx} \\ $$ Commented by benjo last updated on 25/Dec/19 $$\mathrm{sir}\:\:\mathrm{do}\:\mathrm{you}\:\mathrm{mean}\:\mathrm{sh}\left(\mathrm{3x}\right)\:=\mathrm{sinh}\:\left(\mathrm{3x}\right)? \\ $$ Commented by…
Question Number 10656 by okhema last updated on 22/Feb/17 $${find}\:{the}\:{equation}\:{of}\:{the}\:{circle}\:{with}\:{diameter}\:{AB}\:{where}\:{A}\:{is}\:{at}\:\left(\mathrm{2},\mathrm{4}\right)\:{and}\:{B}\:{is}\:{at}\:\left(−\mathrm{1},\mathrm{6}\right) \\ $$ Answered by FilupS last updated on 22/Feb/17 $$\mathrm{circle}\:\mathrm{centred}\:\mathrm{at}\:\left({a},\:{b}\right)\:\mathrm{with}\:\mathrm{radius}\:{r} \\ $$$${r}=\:\frac{\mathrm{1}}{\mathrm{2}}{AB} \\ $$$$\left({a},\:{b}\right)\:\mathrm{is}\:\mathrm{half}\:\mathrm{way}\:\mathrm{between}\:{A}\:\mathrm{and}\:{B} \\…
Question Number 76190 by abdomathmax last updated on 25/Dec/19 $${let}\:{f}\left({x}\right)=\frac{{arctan}\left(\mathrm{1}+{x}\right)}{\mathrm{2}+{x}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$ Commented by mathmax by abdo last updated…
Question Number 10655 by FilupS last updated on 22/Feb/17 $$\mathrm{Show}\:\mathrm{me}\:\mathrm{your}\:\mathrm{favourite}\:\mathrm{proofs} \\ $$$$\mathrm{relating}\:\mathrm{to}\:{e} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 76191 by abdomathmax last updated on 25/Dec/19 $${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\frac{{e}^{{x}} −{e}^{\left[{x}\right]} }{{x}} \\ $$ Answered by Rio Michael last updated on 25/Dec/19 $${Am}\:{not}\:{sure}\:{if}\:{this}\:{limit} \\…
Question Number 10654 by FilupS last updated on 22/Feb/17 $$\mathrm{Show}\:\mathrm{me}\:\mathrm{your}\:\mathrm{favorite}\:\mathrm{proofs} \\ $$$$\mathrm{relating}\:\mathrm{to}\:\pi \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 10653 by Saham last updated on 21/Feb/17 $$\mathrm{A}\:\mathrm{ship}\:\mathrm{leaves}\:\mathrm{a}\:\mathrm{port}\:\mathrm{P}\:\mathrm{which}\:\mathrm{lies}\:\mathrm{in}\:\mathrm{latitude}\:\mathrm{20}°\mathrm{N}.\:\mathrm{It}\:\mathrm{sails}\:\mathrm{due}\:\mathrm{east} \\ $$$$\mathrm{through}\:\mathrm{30}°\:\mathrm{of}\:\:\mathrm{longitude}\:\mathrm{and}\:\mathrm{then}\:\mathrm{through}\:\mathrm{south}\:\mathrm{to}\:\mathrm{Q}\:\mathrm{which}\:\mathrm{lies} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{equator}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{it}\:\mathrm{has}\:\mathrm{travelled}, \\ $$$$\left(\mathrm{Take}\:\mathrm{the}\:\mathrm{cicumference}\:\mathrm{of}\:\mathrm{the}\:\mathrm{earth}\:\mathrm{to}\:\mathrm{be}\:\mathrm{40},\mathrm{000}\:\mathrm{km}\right). \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{return}\:\mathrm{jouney}\:\mathrm{it}\:\mathrm{sails}\:\mathrm{due}\:\mathrm{west}\:\mathrm{through}\:\mathrm{30}°\:\mathrm{of}\:\mathrm{longitude}\:\mathrm{and} \\ $$$$\mathrm{then}\:\mathrm{due}\:\mathrm{north}\:\mathrm{back}\:\mathrm{to}\:\mathrm{P}.\:\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{difference}\:\mathrm{in}\:\mathrm{length}\:\mathrm{between} \\ $$$$\mathrm{the}\:\mathrm{outward}\:\mathrm{and}\:\mathrm{return}\:\mathrm{jouney}\:\mathrm{is}\:\mathrm{approximately}\:\mathrm{201}\:\mathrm{kilometers}. \\ $$$$\mathrm{Using}\:\mathrm{this}\:\mathrm{value}\:\mathrm{of}\:\mathrm{201}\:\mathrm{km}\:\mathrm{and}\:\mathrm{taking}\:\mathrm{1}\:\mathrm{knot}\:\mathrm{to}\:\mathrm{be}\:\mathrm{1}.\mathrm{852}\:\mathrm{km}/\mathrm{hr}\:. \\…
Question Number 141716 by qaz last updated on 22/May/21 $$\left({x}^{\mathrm{2}} {lnx}\right){y}''−{xy}'+{y}=\mathrm{0} \\ $$ Answered by mnjuly1970 last updated on 23/May/21 $$\:\:{y}_{{p}_{\mathrm{1}} } ={ln}\left({x}\right)+\mathrm{1}\:\:\:\:\:\:\:\:{or}\:\:\:\:{y}_{{p}_{\mathrm{1}} } ={x}…
Question Number 141719 by qaz last updated on 22/May/21 $$\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{x}^{\mathrm{2}} } }{\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{dx}=? \\ $$ Answered by MJS_new last updated on 23/May/21…