Menu Close

Author: Tinku Tara

Question-223673

Question Number 223673 by gregori last updated on 02/Aug/25 Answered by som(math1967) last updated on 02/Aug/25 $$\:{tan}^{\mathrm{2}} {x}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\:\frac{{sin}^{\mathrm{8}} {x}}{\mathrm{8}}+\frac{\mathrm{cos}\:^{\mathrm{8}} {x}}{\mathrm{27}}=\frac{\mathrm{1}}{\mathrm{125}} \\ $$$$\:\frac{{sin}^{\mathrm{4}} {x}}{\mathrm{2}}\:+\frac{\left(\mathrm{1}−{sin}^{\mathrm{2}}…

Question-223700

Question Number 223700 by BaliramKumar last updated on 02/Aug/25 $$\:\underline{\underbrace{\:}} \\ $$ Answered by mehdee7396 last updated on 02/Aug/25 $${let}\:\:{a}=\mathrm{2}{k}+\mathrm{1}\Rightarrow{x}^{\mathrm{2}} −\mathrm{2}{kx}+\mathrm{8}{k}+\mathrm{11}=\mathrm{0} \\ $$$$\Rightarrow\Delta={k}^{\mathrm{2}} −\mathrm{8}{k}−\mathrm{11}={n}^{\mathrm{2}} \\…

25-x-8-5-x-16-

Question Number 223685 by fantastic last updated on 02/Aug/25 $$\mathrm{25}^{{x}} −\mathrm{8}.\mathrm{5}^{{x}} =−\mathrm{16} \\ $$ Answered by Rasheed.Sindhi last updated on 02/Aug/25 $$\left(\mathrm{5}^{{x}} \right)^{\mathrm{2}} −\mathrm{8}\left(\mathrm{5}^{{x}} \right)=−\mathrm{16}…

Question-223703

Question Number 223703 by Rojarani last updated on 02/Aug/25 Answered by Rasheed.Sindhi last updated on 02/Aug/25 $$\left(\frac{{x}−\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{3}} =\frac{\mathrm{4}}{\mathrm{9}}+\sqrt[{\mathrm{4}}]{\frac{\mathrm{3}}{\mathrm{27}}}\:+\sqrt[{\mathrm{3}}]{\frac{\mathrm{9}}{\mathrm{27}}}\: \\ $$$$\frac{{x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}{x}−\mathrm{1}}{\mathrm{27}}=\frac{\mathrm{4}}{\mathrm{9}}+\frac{\sqrt[{\mathrm{3}}]{\mathrm{3}}}{\mathrm{3}}\:+\frac{\sqrt[{\mathrm{3}}]{\mathrm{9}}}{\mathrm{3}}\: \\ $$$${x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}}…

Question-223712

Question Number 223712 by fantastic last updated on 02/Aug/25 Commented by fantastic last updated on 02/Aug/25 $${a}\:{bulet}\:{of}\:{mass}\:{m}\:{and}\:{velocity}\:{v} \\ $$$${hits}\:{a}\:{wooden}\:{block}\:{of}\:{mass}\:{M}\:{which}\:{is}\:{tied}\:{with}\:{a}\: \\ $$$${rope}\:{of}\:{length}\:{l}.\left({the}\:{bullet}\:{sticks}\:{with}\:{the}\:{block}\right) \\ $$$${Find}\:{theta} \\ $$…