Menu Close

Author: Tinku Tara

can-someone-explain-to-me-big-K-notation-I-don-t-know-the-name-It-is-related-to-continuous-fractions-e-g-x-b-0-K-i-1-a-i-b-i-e-x-x-0-0-x-1-1-x-2-2-e-x-i-0

Question Number 10563 by FilupS last updated on 18/Feb/17 $$\mathrm{can}\:\mathrm{someone}\:\mathrm{explain}\:\mathrm{to}\:\mathrm{me} \\ $$$$\mathrm{big}\:\mathrm{K}\:\mathrm{notation}?\:\left(\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{the}\:\mathrm{name}\right) \\ $$$$\mathrm{It}\:\mathrm{is}\:\mathrm{related}\:\mathrm{to}\:\mathrm{continuous}\:\mathrm{fractions}. \\ $$$$\mathrm{e}.\mathrm{g}.\:\:\:{x}={b}_{\mathrm{0}} +\underset{{i}=\mathrm{1}} {\overset{\infty} {\boldsymbol{\mathrm{K}}}}\frac{{a}_{{i}} }{{b}_{{i}} } \\ $$$$\: \\ $$$${e}^{{x}}…

Let-f-x-sin-x-x-prove-that-n-0-f-npi-f-npi-1-f-

Question Number 141632 by Willson last updated on 21/May/21 $$\mathrm{Let}\:{f}\left({x}\right)=\frac{{sin}\left({x}\right)}{{x}}\:,\:\mathrm{prove}\:\mathrm{that}\:: \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\:{f}\left({n}\pi+\alpha\right)+{f}\left({n}\pi−\alpha\right)\:\right]=\:\mathrm{1}+{f}\left(\alpha\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

x-x-1-x-2-x-n-y-y-1-y-2-y-n-x-y-R-n-1-Prove-the-length-of-the-vector-x-denoted-x-is-equal-to-x-1-2-x-2-2-x-n-2-

Question Number 10562 by FilupS last updated on 18/Feb/17 $$\boldsymbol{{x}}=\begin{bmatrix}{{x}_{\mathrm{1}} }\\{{x}_{\mathrm{2}} }\\{\:\vdots}\\{{x}_{{n}} }\end{bmatrix}\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{y}}=\begin{bmatrix}{{y}_{\mathrm{1}} }\\{{y}_{\mathrm{2}} }\\{\:\vdots}\\{{y}_{{n}} }\end{bmatrix}\:\:\:\:\:\:\:\:\boldsymbol{{x}},\:\boldsymbol{{y}}\:\in\:\mathbb{R}^{{n}} \\ $$$$\: \\ $$$$\mathrm{1}.\:\mathrm{Prove}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{vector}\:\boldsymbol{{x}},\:\mathrm{denoted}\:\mid\mid\boldsymbol{{x}}\mid\mid, \\ $$$$\:\:\:\:\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\sqrt{{x}_{\mathrm{1}} ^{\mathrm{2}} +{x}_{\mathrm{2}} ^{\mathrm{2}}…

why-x-0-1-ln-u-x-1-du-I-don-t-know-how-to-prove-this-

Question Number 10555 by paonky last updated on 17/Feb/17 $$\mathrm{why}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \left[−\mathrm{ln}\left(\mathrm{u}\right)\right]^{{x}−\mathrm{1}} {du}\:\:? \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{how}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{this} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-141627

Question Number 141627 by cherokeesay last updated on 21/May/21 Answered by MJS_new last updated on 21/May/21 $$\frac{\mathrm{sin}\:\mathrm{2}{x}\:+\mathrm{sin}\:\mathrm{4}{x}}{\mathrm{1}+\mathrm{cos}\:\mathrm{2}{x}\:+\mathrm{cos}\:\mathrm{4}{x}}=\frac{−\mathrm{2sin}\:{x}\:\mathrm{cos}\:{x}\:\left(\mathrm{1}−\mathrm{4cos}^{\mathrm{2}} \:{x}\right)}{\mathrm{1}+\mathrm{2cos}^{\mathrm{2}} \:{x}\:\left(\mathrm{1}−\mathrm{4sin}^{\mathrm{2}} \:{x}\right)}= \\ $$$$\:\:\:\:\:\left[\mathrm{sin}\:{x}\:=\frac{\mathrm{tan}\:{x}}{\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:{x}}}\wedge\mathrm{cos}\:{x}\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:{x}}}\right] \\…