Question Number 76086 by hejdj last updated on 23/Dec/19 $${what}\:{is}\:{minimal}\:{expression}\:{for}\:\mathrm{sin}\:\frac{\pi}{{k}}\: \\ $$$$\mathrm{cos}\:\frac{\pi}{{k}},\:\mathrm{tan}\:\frac{\pi}{{k}},\:\mathrm{cosec}\:\frac{\pi}{{k}},\mathrm{sec}\:\frac{\pi}{{k}}{and}\:\mathrm{cot}\:\frac{\pi}{{k}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 76087 by aliesam last updated on 23/Dec/19 Answered by mr W last updated on 23/Dec/19 Commented by mr W last updated on 23/Dec/19…
Question Number 141623 by qaz last updated on 21/May/21 $$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{n}} }{\mathrm{1}+{x}}{dx}\right)^{\mathrm{2}} ={ln}\:\mathrm{2} \\ $$ Answered by mindispower last updated on 21/May/21…
Question Number 10547 by Saham last updated on 17/Feb/17 $$\mathrm{A}\:\mathrm{man}\:\mathrm{can}\:\mathrm{row}\:\mathrm{a}\:\mathrm{boat}\:\mathrm{at}\:\mathrm{4}\:\mathrm{km}/\mathrm{hr}\:\mathrm{in}\:\mathrm{still}\:\mathrm{water}. \\ $$$$\mathrm{He}\:\mathrm{rows}\:\mathrm{the}\:\mathrm{boat}\:\mathrm{2km}\:\mathrm{upstream}\:\mathrm{and}\:\mathrm{2km}\:\mathrm{back}\:\mathrm{to} \\ $$$$\mathrm{his}\:\mathrm{starting}\:\mathrm{place}\:\mathrm{in}\:\mathrm{2}\:\mathrm{hours}.\:\mathrm{How}\:\mathrm{fast}\:\mathrm{is}\:\mathrm{the}\:\mathrm{stream} \\ $$$$\mathrm{flowing}\:? \\ $$ Answered by mrW1 last updated on 17/Feb/17…
Question Number 10543 by j.masanja06@gmail.com last updated on 17/Feb/17 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 141612 by Raxreedoroid last updated on 21/May/21 $$\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} {C}_{{k}−\mathrm{1}} ^{\:{n}−\mathrm{2}} }{\left({k}+\mathrm{1}\right)^{{x}} }=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 10542 by FilupS last updated on 17/Feb/17 $$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{tan}\left(\mathrm{sec}^{−\mathrm{1}} \left(\sqrt{\mathrm{tan}\left(\theta\right)}\right)\right)=\sqrt{\mathrm{tan}\left(\theta\right)}\sqrt{\mathrm{1}−\mathrm{cot}\left(\theta\right)} \\ $$ Answered by mrW1 last updated on 17/Feb/17 $${let}\:\alpha=\mathrm{sec}^{−\mathrm{1}} \left(\sqrt{\mathrm{tan}\:\left(\theta\right)}\right) \\…
Question Number 141614 by ArielVyny last updated on 21/May/21 $$\Sigma\frac{\mathrm{1}}{{k}+\mathrm{1}}{C}_{{n}} ^{{k}} \:.\: \\ $$ Commented by Dwaipayan Shikari last updated on 21/May/21 $$\frac{\mathrm{1}}{{k}+\mathrm{1}}\underset{{n}=\mathrm{0}} {\overset{{k}} {\sum}}{C}_{{n}}…
Question Number 76077 by vishalbhardwaj last updated on 23/Dec/19 $$\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{maximum}}\:\boldsymbol{\mathrm{area}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{isosceles}}\:\boldsymbol{\mathrm{triangle}} \\ $$$$\boldsymbol{\mathrm{inscribed}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{ellipse}}\:\frac{\boldsymbol{{x}}^{\mathrm{2}} }{\boldsymbol{{a}}^{\mathrm{2}} }\:+\:\frac{\boldsymbol{{y}}^{\mathrm{2}} }{\boldsymbol{{b}}^{\mathrm{2}} }\:=\:\mathrm{1}\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{its}}\:\boldsymbol{\mathrm{vetrex}}\: \\ $$$$\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{one}}\:\boldsymbol{\mathrm{end}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{major}}\:\boldsymbol{\mathrm{axis}}\:?\:? \\ $$ Commented by MJS last updated…
Question Number 10540 by FilupS last updated on 17/Feb/17 Commented by FilupS last updated on 17/Feb/17 $$\mathrm{All}\:\mathrm{side}\:\mathrm{lenghts}\:=\:{n} \\ $$$$\angle{CAE}=\theta \\ $$$$\mathrm{0}\leqslant\theta<\frac{\pi}{\mathrm{3}} \\ $$$$\: \\ $$$$\mathrm{1}.\:\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{overlapping}\:\mathrm{sections}…