Menu Close

Author: Tinku Tara

what-is-minimal-expression-for-sin-pi-k-cos-pi-k-tan-pi-k-cosec-pi-k-sec-pi-k-and-cot-pi-k-

Question Number 76086 by hejdj last updated on 23/Dec/19 $${what}\:{is}\:{minimal}\:{expression}\:{for}\:\mathrm{sin}\:\frac{\pi}{{k}}\: \\ $$$$\mathrm{cos}\:\frac{\pi}{{k}},\:\mathrm{tan}\:\frac{\pi}{{k}},\:\mathrm{cosec}\:\frac{\pi}{{k}},\mathrm{sec}\:\frac{\pi}{{k}}{and}\:\mathrm{cot}\:\frac{\pi}{{k}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

A-man-can-row-a-boat-at-4-km-hr-in-still-water-He-rows-the-boat-2km-upstream-and-2km-back-to-his-starting-place-in-2-hours-How-fast-is-the-stream-flowing-

Question Number 10547 by Saham last updated on 17/Feb/17 $$\mathrm{A}\:\mathrm{man}\:\mathrm{can}\:\mathrm{row}\:\mathrm{a}\:\mathrm{boat}\:\mathrm{at}\:\mathrm{4}\:\mathrm{km}/\mathrm{hr}\:\mathrm{in}\:\mathrm{still}\:\mathrm{water}. \\ $$$$\mathrm{He}\:\mathrm{rows}\:\mathrm{the}\:\mathrm{boat}\:\mathrm{2km}\:\mathrm{upstream}\:\mathrm{and}\:\mathrm{2km}\:\mathrm{back}\:\mathrm{to} \\ $$$$\mathrm{his}\:\mathrm{starting}\:\mathrm{place}\:\mathrm{in}\:\mathrm{2}\:\mathrm{hours}.\:\mathrm{How}\:\mathrm{fast}\:\mathrm{is}\:\mathrm{the}\:\mathrm{stream} \\ $$$$\mathrm{flowing}\:? \\ $$ Answered by mrW1 last updated on 17/Feb/17…

Prove-that-tan-sec-1-tan-tan-1-cot-

Question Number 10542 by FilupS last updated on 17/Feb/17 $$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{tan}\left(\mathrm{sec}^{−\mathrm{1}} \left(\sqrt{\mathrm{tan}\left(\theta\right)}\right)\right)=\sqrt{\mathrm{tan}\left(\theta\right)}\sqrt{\mathrm{1}−\mathrm{cot}\left(\theta\right)} \\ $$ Answered by mrW1 last updated on 17/Feb/17 $${let}\:\alpha=\mathrm{sec}^{−\mathrm{1}} \left(\sqrt{\mathrm{tan}\:\left(\theta\right)}\right) \\…

1-k-1-C-n-k-

Question Number 141614 by ArielVyny last updated on 21/May/21 $$\Sigma\frac{\mathrm{1}}{{k}+\mathrm{1}}{C}_{{n}} ^{{k}} \:.\: \\ $$ Commented by Dwaipayan Shikari last updated on 21/May/21 $$\frac{\mathrm{1}}{{k}+\mathrm{1}}\underset{{n}=\mathrm{0}} {\overset{{k}} {\sum}}{C}_{{n}}…

Find-the-maximum-area-of-an-isosceles-triangle-inscribed-in-an-ellipse-x-2-a-2-y-2-b-2-1with-its-vetrex-at-one-end-of-the-major-axis-

Question Number 76077 by vishalbhardwaj last updated on 23/Dec/19 $$\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{maximum}}\:\boldsymbol{\mathrm{area}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{isosceles}}\:\boldsymbol{\mathrm{triangle}} \\ $$$$\boldsymbol{\mathrm{inscribed}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{ellipse}}\:\frac{\boldsymbol{{x}}^{\mathrm{2}} }{\boldsymbol{{a}}^{\mathrm{2}} }\:+\:\frac{\boldsymbol{{y}}^{\mathrm{2}} }{\boldsymbol{{b}}^{\mathrm{2}} }\:=\:\mathrm{1}\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{its}}\:\boldsymbol{\mathrm{vetrex}}\: \\ $$$$\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{one}}\:\boldsymbol{\mathrm{end}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{major}}\:\boldsymbol{\mathrm{axis}}\:?\:? \\ $$ Commented by MJS last updated…

Question-10540

Question Number 10540 by FilupS last updated on 17/Feb/17 Commented by FilupS last updated on 17/Feb/17 $$\mathrm{All}\:\mathrm{side}\:\mathrm{lenghts}\:=\:{n} \\ $$$$\angle{CAE}=\theta \\ $$$$\mathrm{0}\leqslant\theta<\frac{\pi}{\mathrm{3}} \\ $$$$\: \\ $$$$\mathrm{1}.\:\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{overlapping}\:\mathrm{sections}…