Question Number 76034 by hmamarques1994@gmail.com last updated on 22/Dec/19 $$\: \\ $$$$\:\mathrm{53}^{\boldsymbol{\mathrm{log}}_{\boldsymbol{\mathrm{x}}} \left(\mathrm{7}\right)} \:=\:\sqrt{\boldsymbol{\mathrm{x}}} \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$$$\: \\ $$ Answered by MJS…
Question Number 141568 by sarkor last updated on 20/May/21 Commented by Dwaipayan Shikari last updated on 20/May/21 $${Area}\:{between}\:{this}\:{curves} \\ $$$$\sqrt{{x}}={x}^{\mathrm{2}} \Rightarrow{x}=\mathrm{1}\:\left({Meeting}\:{point}\right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{x}}−{x}^{\mathrm{2}}…
Question Number 76032 by aliesam last updated on 22/Dec/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 141570 by ayb last updated on 21/May/21 Answered by MathematicalUser2357 last updated on 29/Dec/23 $$\mathrm{And}\:\mathrm{that}'\mathrm{s}\:\mathrm{your}\:\mathrm{answer}. \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 10495 by ajfour last updated on 14/Feb/17 $$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \sqrt{{R}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{Rr}\mathrm{cos}\:\theta}\:{d}\theta \\ $$ Answered by robocop last updated on 14/Feb/17 $${todo}\:{en}\:{funcion}\:{de}\:\theta \\…
Question Number 10493 by ABD last updated on 14/Feb/17 $$\frac{\mathrm{1}}{\mathrm{2}!}+\frac{\mathrm{2}}{\mathrm{3}!}+\frac{\mathrm{3}}{\mathrm{4}!}+\frac{\mathrm{4}}{\mathrm{5}!}+…+\frac{\mathrm{17}}{\mathrm{18}!}=? \\ $$ Answered by mrW1 last updated on 14/Feb/17 $${since}\:\frac{{n}}{\left({n}+\mathrm{1}\right)!}=\frac{\mathrm{1}}{{n}!}−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}!}+\frac{\mathrm{2}}{\mathrm{3}!}+\frac{\mathrm{3}}{\mathrm{4}!}+\frac{\mathrm{4}}{\mathrm{5}!}+…+\frac{\mathrm{17}}{\mathrm{18}!} \\ $$$$=\left(\frac{\mathrm{1}}{\mathrm{1}!}−\frac{\mathrm{1}}{\mathrm{2}!}\right)+\left(\frac{\mathrm{1}}{\mathrm{2}!}−\frac{\mathrm{1}}{\mathrm{3}!}\right)+\left(\frac{\mathrm{1}}{\mathrm{3}!}−\frac{\mathrm{1}}{\mathrm{4}!}\right)+\centerdot\centerdot\centerdot+\left(\frac{\mathrm{1}}{\mathrm{17}!}−\frac{\mathrm{1}}{\mathrm{18}!}\right) \\…
Question Number 10492 by ABD last updated on 14/Feb/17 $$\mathrm{3}^{{logx}} −\mathrm{2}^{{logx}−\mathrm{1}} =\mathrm{2}^{{logx}+\mathrm{1}} −\mathrm{2}×\mathrm{3}^{{logx}−\mathrm{1}} \Rightarrow{x}=? \\ $$ Answered by mrW1 last updated on 14/Feb/17 $$\mathrm{3}^{{logx}} −\frac{\mathrm{2}^{\mathrm{log}\:{x}}…
Question Number 141560 by mnjuly1970 last updated on 20/May/21 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:……..{Nice}\:….{Calculus}\left({I}\right)…… \\ $$$$\:\:\:\:\:{Evaluate}::\:\: \\ $$$$\:\:\:\:\:\mathrm{I}:=\int_{\mathrm{0}} ^{\:{ln}\left(\mathrm{2}\right)} \frac{{x}}{{e}^{{x}} +\mathrm{2}{e}^{−{x}} −\mathrm{2}}{dx}=? \\ $$$$\:\:\:\:…… \\ $$ Answered…
Question Number 10489 by Saham last updated on 13/Feb/17 $$\mathrm{The}\:\mathrm{fifth},\:\mathrm{nineth},\:\mathrm{sixteenth}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{a}\:\mathrm{linear}\: \\ $$$$\mathrm{sequence}\:\mathrm{are}\:\mathrm{consecutive}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{an}\:\mathrm{exponential} \\ $$$$\mathrm{sequence}\:. \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{common}\:\mathrm{difference}\:\mathrm{of}\:\mathrm{the}\:\mathrm{linear}\: \\ $$$$\mathrm{sequence}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{term} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Show}\:\mathrm{that}\:\mathrm{21}^{\mathrm{th}} ,\:\mathrm{37}^{\mathrm{th}} ,\:\mathrm{65}^{\mathrm{th}} \:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{linear} \\ $$$$\mathrm{sequence}\:\mathrm{are}\:\mathrm{consecutive}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{an}\:\mathrm{exponential}…
Question Number 10488 by Saham last updated on 13/Feb/17 $$\mathrm{An}\:\mathrm{exponential}\:\mathrm{sequence}\:\mathrm{of}\:\mathrm{positive}\:\mathrm{terms}\:\mathrm{and}\:\mathrm{a} \\ $$$$\mathrm{linear}\:\mathrm{sequence}\:\mathrm{have}\:\mathrm{the}\:\mathrm{same}\:\mathrm{first}\:\mathrm{term}.\:\mathrm{the}\:\mathrm{sum} \\ $$$$\mathrm{o}\:\mathrm{their}\:\mathrm{first}\:\mathrm{term}\:\mathrm{is}\:\mathrm{3},\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{their}\:\mathrm{second}\:\mathrm{term} \\ $$$$\mathrm{is}\:\frac{\mathrm{3}}{\mathrm{2}},\:\mathrm{and}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{their}\:\mathrm{third}\:\mathrm{term}\:\mathrm{is}\:\mathrm{6}.\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{sum}\:\mathrm{of}\:\mathrm{their}\:\mathrm{fifth}\:\mathrm{term}. \\ $$ Answered by mrW1 last updated…