Question Number 10475 by ketto last updated on 13/Feb/17 $${aman}\:{walks}\:\mathrm{600}{m}\:{at}\:{a}\:{bearing}\:{of}\: \\ $$$$\mathrm{45}^{\mathrm{0}\:} {then}\:\mathrm{500}{m}\:{at}\:{a}\:{bearing}\:\mathrm{90}^{\mathrm{0}} \: \\ $$$${then}\:\mathrm{300}{m}\:{at}\:{bearing}\:{of}\:\mathrm{135}^{\mathrm{0}\:} \: \\ $$$${then}\:\mathrm{400}{m}\:{at}\:{a}\:{bearing}\:{of}\:\mathrm{225}^{\mathrm{0}} \\ $$$$.{find}\:{the}\:{resultant}\:{displacement} \\ $$$${which}\:{the}\:{man}\:{has}\:{made} \\ $$…
Question Number 10474 by FilupS last updated on 13/Feb/17 $$\mathrm{Just}\:\mathrm{so}\:\mathrm{you}\:\mathrm{all}\:\mathrm{know},\:\mathrm{I}\:\mathrm{had}\:\mathrm{to}\:\mathrm{make} \\ $$$$\mathrm{a}\:\mathrm{new}\:\mathrm{username}.\:\mathrm{I}\:\mathrm{am}\:\mathrm{FilupSmith} \\ $$ Commented by sandy_suhendra last updated on 13/Feb/17 $$\mathrm{ok}\:\mathrm{Filup} \\ $$ Terms…
Question Number 76009 by Rio Michael last updated on 22/Dec/19 $${hiw}\:{do}\:{i}\:{solve} \\ $$$$\mathrm{2}^{{x}} \:=\:\mathrm{4}{x}? \\ $$ Answered by mr W last updated on 22/Dec/19 $$\mathrm{2}^{{x}}…
Question Number 10472 by Wilton last updated on 13/Feb/17 $${My}\:{name}\:{is}\:{Wilton}\:{Stewart}\:{i}\:{have}\:{problem}\:{with}\:{math}\:{i}\:{would}\:{like}\:{some}\:{help}. \\ $$$$ \\ $$ Commented by okhema last updated on 13/Feb/17 $${just}\:{tell}\:{us}\:{the}\:{topics}\:{you}\:{got}\:{problem}\:{with}\:{and}\:{we}\:{will}\:{try}\:{our}\:{best}\:{on}\:{helping} \\ $$$$ \\…
Question Number 10470 by ABD last updated on 13/Feb/17 Answered by sandy_suhendra last updated on 13/Feb/17 $$\mathrm{squares}\:\mathrm{1}×\mathrm{1}=\mathrm{8}^{\mathrm{2}} =\mathrm{64} \\ $$$$\mathrm{squares}\:\mathrm{2}×\mathrm{2}=\mathrm{7}^{\mathrm{2}} =\mathrm{49} \\ $$$$\mathrm{squares}\:\mathrm{3}×\mathrm{3}=\mathrm{6}^{\mathrm{2}} =\mathrm{36} \\…
Question Number 10469 by FilupSmith last updated on 11/Feb/17 $$\mathrm{One}\:\mathrm{definition}\:\mathrm{of}\:\:\Gamma\left({x}+\mathrm{1}\right)\:\:\mathrm{is}: \\ $$$$\Gamma\left({x}+\mathrm{1}\right)=\int_{\mathrm{0}} ^{\:\infty} {e}^{−{t}} {t}^{{x}} {dx} \\ $$$$\: \\ $$$$\mathrm{According}\:\mathrm{to}\:\mathrm{WolframAlpha},\:\mathrm{another} \\ $$$$\mathrm{definition}\:\mathrm{is}: \\ $$$$\Gamma\left({x}+\mathrm{1}\right)=\frac{\mathrm{1}}{{e}^{\mathrm{2}{i}\pi{x}} −\mathrm{1}}\oint_{{L}}…
Question Number 10468 by FilupSmith last updated on 11/Feb/17 $$\mathrm{Show}\:\mathrm{why}: \\ $$$$\Gamma\left({x}+\mathrm{1}\right)\approx\sqrt{\mathrm{2}\pi}{e}^{−{x}} {x}^{{x}+\frac{\mathrm{1}}{\mathrm{2}}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 76003 by mivheal last updated on 22/Dec/19 $$\mathrm{22}+\mathrm{2} \\ $$ Answered by 21042004 last updated on 22/Dec/19 $$\mathrm{So}\:\mathrm{simple}: \\ $$$$\mathrm{22}+\mathrm{2}=\mathrm{24} \\ $$ Terms…
Question Number 10464 by ABD last updated on 10/Feb/17 Answered by mrW1 last updated on 10/Feb/17 $${for}\:\mid{x}−\mathrm{2}\mid=\mathrm{0}\:\Rightarrow{x}=\mathrm{2},\:\mid\mathrm{3}{x}−\mathrm{8}\mid=\mathrm{2} \\ $$$${for}\:\mid\mathrm{3}{x}−\mathrm{8}\mid=\mathrm{0}\:\Rightarrow{x}=\frac{\mathrm{8}}{\mathrm{3}},\:\mid{x}−\mathrm{2}\mid=\frac{\mathrm{2}}{\mathrm{3}}<\mathrm{2} \\ $$$${A}_{{max}} =\frac{\mathrm{24}}{\frac{\mathrm{2}}{\mathrm{3}}+\mathrm{0}}=\mathrm{36} \\ $$ Terms…
Question Number 141533 by sarkor last updated on 20/May/21 Answered by qaz last updated on 20/May/21 $$\int\frac{{dx}}{\mathrm{1}+\mathrm{3cos}\:^{\mathrm{2}} {x}}=\int\frac{\mathrm{sin}\:^{\mathrm{2}} {x}+\mathrm{cos}\:^{\mathrm{2}} {x}}{\mathrm{sin}\:^{\mathrm{2}} {x}+\mathrm{4cos}\:^{\mathrm{2}} {x}}{dx} \\ $$$$=\int\frac{\mathrm{tan}\:^{\mathrm{2}} {x}+\mathrm{1}}{\mathrm{tan}\:^{\mathrm{2}}…