Menu Close

Author: Tinku Tara

x-2-5x-6-0-amp-x-2-kx-1-0-have-a-common-root-then-k-

Question Number 205021 by BaliramKumar last updated on 06/Mar/24 $${x}^{\mathrm{2}} \:+\:\mathrm{5}{x}\:+\mathrm{6}\:=\:\mathrm{0}\:\&\:{x}^{\mathrm{2}} \:+\:{kx}\:+\:\mathrm{1}\:=\:\mathrm{0}\:{have}\:{a}\: \\ $$$${common}\:{root}\:\mathrm{then}\:\:{k}\:=\:? \\ $$ Answered by Rasheed.Sindhi last updated on 06/Mar/24 $${x}^{\mathrm{2}} \:+\:\mathrm{5}{x}\:+\mathrm{6}\:=\:\mathrm{0}\:\&\:{x}^{\mathrm{2}}…

For-what-value-of-k-can-be-expression-x-3-kx-2-7x-6-be-resolved-into-three-linear-factors-a-0-b-1-c-2-d-3-

Question Number 205018 by BaliramKumar last updated on 06/Mar/24 $$\mathrm{For}\:\mathrm{what}\:\mathrm{value}\:\mathrm{of}\:\:'\mathrm{k}'\:\mathrm{can}\:\mathrm{be}\:\mathrm{expression}\:{x}^{\mathrm{3}} \:+\:{kx}^{\mathrm{2}} \:−\mathrm{7}{x}\:+\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\mathrm{be}\:\mathrm{resolved}\:\mathrm{into}\:\mathrm{three}\:\mathrm{linear}\:\mathrm{factors}? \\ $$$$\left(\mathrm{a}\right)\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\:\mathrm{3} \\ $$ Commented by Rasheed.Sindhi last updated on 06/Mar/24…

Find-all-values-of-k-such-that-the-expression-x-3-kx-2-7x-6-can-be-resolved-into-three-linear-real-factors-

Question Number 205051 by mr W last updated on 06/Mar/24 $$\mathrm{Find}\:\mathrm{all}\:\mathrm{values}\:\mathrm{of}\:\:\mathrm{k}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{expr}{e}\mathrm{ssion}\:\mathrm{x}^{\mathrm{3}} +\:\mathrm{kx}^{\mathrm{2}} −\mathrm{7x}+\mathrm{6}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{re}{s}\mathrm{olved}\:\mathrm{into}\:\mathrm{three}\:\mathrm{linear}\:\mathrm{real}\:\mathrm{factors}. \\ $$ Answered by Frix last updated on…

Question-205001

Question Number 205001 by rajusasmal last updated on 05/Mar/24 Answered by TonyCWX08 last updated on 05/Mar/24 $$\mathrm{44}.\: \\ $$$${x}^{\mathrm{2}} −{y}^{\mathrm{2}} \\ $$$$=\left({asec}\left(\theta\right)+{btan}\left(\theta\right)\right)^{\mathrm{2}} −\left({atan}\left(\theta\right)+{bsec}\left(\theta\right)\right)^{\mathrm{2}} \\ $$$$={a}^{\mathrm{2}}…