Question Number 205021 by BaliramKumar last updated on 06/Mar/24 $${x}^{\mathrm{2}} \:+\:\mathrm{5}{x}\:+\mathrm{6}\:=\:\mathrm{0}\:\&\:{x}^{\mathrm{2}} \:+\:{kx}\:+\:\mathrm{1}\:=\:\mathrm{0}\:{have}\:{a}\: \\ $$$${common}\:{root}\:\mathrm{then}\:\:{k}\:=\:? \\ $$ Answered by Rasheed.Sindhi last updated on 06/Mar/24 $${x}^{\mathrm{2}} \:+\:\mathrm{5}{x}\:+\mathrm{6}\:=\:\mathrm{0}\:\&\:{x}^{\mathrm{2}}…
Question Number 205054 by SANOGO last updated on 06/Mar/24 $${prove} \\ $$$$\left({lim}\:{sup}\left({A}_{{n}} \right)\right)^{{c}} =\:{lim}\:{inf}\left({A}_{{n}} ^{{c}} \right) \\ $$ Commented by aleks041103 last updated on 11/Mar/24…
Question Number 205055 by SANOGO last updated on 06/Mar/24 $$\left({lim}\:{inf}\left({A}_{{n}} \right)\right)^{{c}} \:={limsup}\left({A}_{{n}} ^{{c}} \right)\:\:\:\:\:{prove} \\ $$ Answered by pi314 last updated on 09/Mar/24 $${What}\:{de}\:{you}\:{mean}\:{Withe}\:{A}_{{n}} \\…
Question Number 205032 by BaliramKumar last updated on 06/Mar/24 Commented by BaliramKumar last updated on 06/Mar/24 $$ \\ $$please clarification Answered by Rasheed.Sindhi last updated…
Question Number 205018 by BaliramKumar last updated on 06/Mar/24 $$\mathrm{For}\:\mathrm{what}\:\mathrm{value}\:\mathrm{of}\:\:'\mathrm{k}'\:\mathrm{can}\:\mathrm{be}\:\mathrm{expression}\:{x}^{\mathrm{3}} \:+\:{kx}^{\mathrm{2}} \:−\mathrm{7}{x}\:+\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\mathrm{be}\:\mathrm{resolved}\:\mathrm{into}\:\mathrm{three}\:\mathrm{linear}\:\mathrm{factors}? \\ $$$$\left(\mathrm{a}\right)\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\:\mathrm{3} \\ $$ Commented by Rasheed.Sindhi last updated on 06/Mar/24…
Question Number 205051 by mr W last updated on 06/Mar/24 $$\mathrm{Find}\:\mathrm{all}\:\mathrm{values}\:\mathrm{of}\:\:\mathrm{k}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{expr}{e}\mathrm{ssion}\:\mathrm{x}^{\mathrm{3}} +\:\mathrm{kx}^{\mathrm{2}} −\mathrm{7x}+\mathrm{6}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{re}{s}\mathrm{olved}\:\mathrm{into}\:\mathrm{three}\:\mathrm{linear}\:\mathrm{real}\:\mathrm{factors}. \\ $$ Answered by Frix last updated on…
Question Number 205045 by cortano12 last updated on 06/Mar/24 $$\:\:\:\:\underbrace{ \underline{}\:} \\ $$ Commented by Rasheed.Sindhi last updated on 06/Mar/24 $$\mathrm{7}\mid{rhs}\:{but}\:\mathrm{7}\nmid\mathrm{450} \\ $$$${hence}\:{positive}\:{integer}\:{x},{y}\:{don}'{t} \\ $$$${exist}.…
Question Number 205024 by cortano12 last updated on 06/Mar/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 205001 by rajusasmal last updated on 05/Mar/24 Answered by TonyCWX08 last updated on 05/Mar/24 $$\mathrm{44}.\: \\ $$$${x}^{\mathrm{2}} −{y}^{\mathrm{2}} \\ $$$$=\left({asec}\left(\theta\right)+{btan}\left(\theta\right)\right)^{\mathrm{2}} −\left({atan}\left(\theta\right)+{bsec}\left(\theta\right)\right)^{\mathrm{2}} \\ $$$$={a}^{\mathrm{2}}…
Question Number 205013 by mathlove last updated on 05/Mar/24 $${if}\:{y}=\sqrt[{\mathrm{7}}]{{x}}\:{prove}\:{that} \\ $$$${y}^{'} =\frac{\mathrm{1}}{\mathrm{7}\:\sqrt[{\mathrm{7}}]{{x}^{\mathrm{6}} }} \\ $$ Answered by Frix last updated on 05/Mar/24 $${y}={x}^{{r}} \:\Rightarrow\:{y}'={rx}^{{r}−\mathrm{1}}…