Menu Close

Author: Tinku Tara

2-cos2x-2-cos-2-x-3-2-cos2x-x-i-m-so-sorry-it-s-my-mistake-the-true-question-is-2-cos2x-2-cos-2-x-3-2-cos2pi-

Question Number 10429 by ridwan balatif last updated on 09/Feb/17 $$\mathrm{2}^{\mathrm{cos2x}} +\mathrm{2}^{\mathrm{cos}^{\mathrm{2}} \mathrm{x}} =\mathrm{3}×\mathrm{2}^{−\mathrm{cos2x}} \: \\ $$$$\mathrm{x}=…? \\ $$$$\mathrm{i}'\mathrm{m}\:\mathrm{so}\:\mathrm{sorry},\:\mathrm{it}'\mathrm{s}\:\mathrm{my}\:\mathrm{mistake},\:\mathrm{the}\:\mathrm{true}\:\mathrm{question}\:\mathrm{is} \\ $$$$\mathrm{2}^{\mathrm{cos2x}} +\mathrm{2}^{\mathrm{cos}^{\mathrm{2}} \mathrm{x}} =\mathrm{3}×\mathrm{2}^{−\mathrm{cos2}\pi} \:…

good-morning-we-have-f-x-x-2-2x-g-x-2x-2-3x-2-and-d-m-mx-2m-1-determine-the-coordonate-of-M-1-and-M-2-intersection-points-respectively-of-Cf-and-d-m-or-Cg-and-d-m-

Question Number 10426 by JAZAR last updated on 10/Feb/17 $${good}\:{morning}!!!! \\ $$$${we}\:{have}\:\:{f}\left({x}\right)={x}^{\mathrm{2}} +\mathrm{2}{x}\:\:\:{g}\left({x}\right)=−\mathrm{2}{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2} \\ $$$${and}\:{d}\left({m}\right)={mx}+\mathrm{2}{m} \\ $$$$\left.\mathrm{1}\right){determine}\:{the}\:{coordonate}\:{of}\:{M}_{\mathrm{1}} \:{and}\:{M}_{\mathrm{2}} \: \\ $$$${intersection}\:{points}\:{respectively}\:{of}\:\left({Cf}\right)\:{and}\:{d}\left({m}\right) \\ $$$${or}\left({Cg}\right)\:{and}\:{d}\left({m}\right) \\…

0-1-0-0-1-0-1-Euler-Mascheroni-Constant-What-is-the-physical-representation-of-a-Matrix-factorial-

Question Number 141494 by Dwaipayan Shikari last updated on 19/May/21 $$\begin{pmatrix}{\mathrm{0}\:−\mathrm{1}}\\{\mathrm{0}\:\:\:\mathrm{0}}\end{pmatrix}!=\begin{pmatrix}{\mathrm{1}\:\:\gamma}\\{\mathrm{0}\:\:\mathrm{1}}\end{pmatrix}\:\:\:\:\:\:\gamma=\boldsymbol{{E}}{uler}\:{Mascheroni}\:{Constant} \\ $$$${What}\:{is}\:{the}\:{physical}\:{representation}\:{of}\:{a}\:{Matrix}\:{factorial}? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-141489

Question Number 141489 by mathsuji last updated on 19/May/21 Answered by qaz last updated on 19/May/21 $${someone}\:{may}\:{be}\:{able}\:{to}\:{deal}\:{with}\: \\ $$$${this}\:\frac{\mathrm{2}}{\:\sqrt{\pi}}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \Sigma\frac{\mathrm{cos}\:^{\mathrm{2}{n}} {x}}{{n}^{\mathrm{2}} +\mathrm{1}}{dx}….. \\ $$…