Menu Close

Author: Tinku Tara

show-that-3-3h-g-and-use-the-similar-expression-to-to-deduce-that-3-3h-g-

Question Number 10352 by j.masanja06@gmail.com last updated on 05/Feb/17 $$\mathrm{show}\:\mathrm{that}\:\alpha^{\mathrm{3}} =−\mathrm{3h}\alpha−\mathrm{g}\:\:\:\mathrm{and}\:\:\mathrm{use}\:\mathrm{the}\: \\ $$$$\mathrm{similar}\:\mathrm{expression}\:\mathrm{to}\:\:\alpha,\gamma\:\:\mathrm{to}\:\mathrm{deduce}\: \\ $$$$\mathrm{that}\:\alpha^{\mathrm{3}} =−\mathrm{3h}\Sigma\alpha\:−\mathrm{g} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

A-1-2-3-n-2-B-15-16-n-A-B-42-n-

Question Number 10347 by konen last updated on 04/Feb/17 $$\mathrm{A}=\mathrm{1}+\mathrm{2}+\mathrm{3}+…+\mathrm{n}−\mathrm{2} \\ $$$$\mathrm{B}=\mathrm{15}+\mathrm{16}+…..+\mathrm{n} \\ $$$$\mathrm{A}−\mathrm{B}=\mathrm{42}\Rightarrow\mathrm{n}=? \\ $$ Answered by mrW1 last updated on 05/Feb/17 $${A}=\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{2}}…

If-a-4-b-4-c-4-d-4-16-Prove-that-a-5-b-5-c-5-d-5-32-

Question Number 75883 by TawaTawa last updated on 19/Dec/19 $$\mathrm{If}\:\:\:\:\mathrm{a}^{\mathrm{4}} \:+\:\mathrm{b}^{\mathrm{4}} \:+\:\mathrm{c}^{\mathrm{4}} \:+\:\mathrm{d}^{\mathrm{4}} \:\:\:=\:\:\:\mathrm{16} \\ $$$$\mathrm{Prove}\:\mathrm{that},\:\:\:\:\:\:\:\:\mathrm{a}^{\mathrm{5}} \:+\:\mathrm{b}^{\mathrm{5}} \:+\:\mathrm{c}^{\mathrm{5}} \:+\:\mathrm{d}^{\mathrm{5}} \:\:\:\leqslant\:\:\:\mathrm{32} \\ $$ Commented by prakash…

1-1-E-x-1-x-dx-

Question Number 141413 by Willson last updated on 18/May/21 $$\underset{\:\mathrm{1}} {\int}^{\:+\infty} \left(\frac{\mathrm{1}}{\mathrm{E}\left(\mathrm{x}\right)}−\frac{\mathrm{1}}{\mathrm{x}}\right)\mathrm{dx}=??? \\ $$ Answered by Mathspace last updated on 18/May/21 $$=\sum_{{n}=\mathrm{1}} ^{\infty\:} \int_{{n}} ^{{n}+\mathrm{1}}…

Find-the-range-of-real-number-of-q-such-that-the-function-f-x-cos-x-q-sin-2-x-5-have-minimum-value-is-5-

Question Number 141412 by bramlexs22 last updated on 18/May/21 $$\:{Find}\:{the}\:{range}\:{of}\:{real}\:{number} \\ $$$${of}\:{q}\:{such}\:{that}\:{the}\:{function}\: \\ $$$$\:{f}\left({x}\right)\:=\:\mathrm{cos}\:{x}\left({q}\:\mathrm{sin}\:^{\mathrm{2}} {x}−\mathrm{5}\right)\:{have} \\ $$$${minimum}\:{value}\:{is}\:−\mathrm{5}\:. \\ $$ Commented by MJS_new last updated on…