Question Number 141398 by miktun last updated on 18/May/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 10324 by amir last updated on 04/Feb/17 Answered by mrW1 last updated on 04/Feb/17 $${y}=\frac{\mathrm{1}}{{x}} \\ $$$${slope}\:{of}\:{tangent}\:{line}: \\ $$$${m}_{{t}} \left({x}\right)=\mathrm{tan}\:\theta={y}'\left({x}\right)=−\frac{\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$$${let}\:{B}\left({t},{s}\right)\:{be}\:{a}\:{point}\:{on}\:{the}\:{curve}\:…
Question Number 10323 by amir last updated on 04/Feb/17 Answered by mrW1 last updated on 04/Feb/17 $${there}\:{are}\:\mathrm{4}\:{circles}\:{which}\:{tangent} \\ $$$${the}\:{curve}\:{and}\:{the}\:{both}\:{coordinate}\:{axes}. \\ $$$${they}\:{tangent}\:{the}\:{curve}\:{at}\:{point}\:\left(\mathrm{1},\mathrm{1}\right) \\ $$$${as}\:{well}\:{as}\:{at}\:{point}\left(−\mathrm{1},−\mathrm{1}\right). \\ $$$$…
Question Number 141395 by iloveisrael last updated on 18/May/21 $$ \\ $$A 64.00 cm3 piece of wood is in the shape of a cube. A…
Question Number 141388 by cesarL last updated on 18/May/21 $$\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \sqrt{\left({senx}\centerdot{cosx}\right)}{dx} \\ $$$${Help} \\ $$ Answered by Dwaipayan Shikari last updated on 18/May/21 $$\int_{\mathrm{0}}…
Question Number 10318 by Tawakalitu ayo mi last updated on 03/Feb/17 $$\mathrm{If}\:\mathrm{12},\:\mathrm{x},\:\mathrm{y}\:\mathrm{and}\:\mathrm{4}\:\mathrm{provides}\:\mathrm{a}\:\mathrm{sequence}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{first}\:\mathrm{3}\:\mathrm{of}\:\mathrm{the}\:\mathrm{numbers}\:\mathrm{are}\:\mathrm{in}\:\mathrm{arithmetic} \\ $$$$\mathrm{progression}.\:\mathrm{Calculate}\:\mathrm{the}\: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{Possible}\:\mathrm{values}\:\mathrm{of}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{A}.\mathrm{P} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{The}\:\mathrm{product}\:\mathrm{of}\:\mathrm{the}\:\mathrm{last}\:\mathrm{3}\:\mathrm{numbers}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{G}.\mathrm{P} \\…
Question Number 10317 by Tawakalitu ayo mi last updated on 03/Feb/17 $$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}. \\ $$$$\mathrm{3}^{\mathrm{2x}} \:=\:\mathrm{18x} \\ $$$$\mathrm{please}\:\mathrm{i}\:\mathrm{need}\:\mathrm{workings}. \\ $$ Answered by mrW1 last updated on…
Question Number 75851 by aliesam last updated on 18/Dec/19 Answered by MJS last updated on 18/Dec/19 $$\mathrm{10}\frac{\mathrm{8}+\mathrm{6i}}{\mathrm{3}−\mathrm{i}}=\mathrm{18}+\mathrm{26i}=\left(\mathrm{3}+\mathrm{i}\right)^{\mathrm{3}} \\ $$$$\left({x}+{y}\mathrm{i}\right)^{\mathrm{3}} ={x}^{\mathrm{3}} −\mathrm{3}{xy}^{\mathrm{2}} +\left(\mathrm{3}{x}^{\mathrm{2}} {y}−{y}^{\mathrm{3}} \right)\mathrm{i} \\…
Question Number 141387 by cesarL last updated on 18/May/21 $$\int_{−\pi/\mathrm{4}} ^{\pi/\mathrm{4}} \left({sec}^{\mathrm{2}} {x}+{tgx}\right)^{\mathrm{2}} {dx} \\ $$ Answered by MJS_new last updated on 18/May/21 $$\underset{−\pi/\mathrm{4}} {\overset{\pi/\mathrm{4}}…
Question Number 75848 by behi83417@gmail.com last updated on 18/Dec/19 $$\underset{\mathrm{0}} {\overset{\:\:\:\:\:\:\:\:\frac{\boldsymbol{\pi}}{\mathrm{2}}} {\int}}\frac{\boldsymbol{\mathrm{sin}}\mathrm{4}\boldsymbol{\mathrm{x}}}{\mathrm{1}+\boldsymbol{\mathrm{sinx}}+\boldsymbol{\mathrm{cosx}}}\boldsymbol{\mathrm{dx}}=? \\ $$ Commented by mathmax by abdo last updated on 18/Dec/19 $${let}\:{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}}…