Menu Close

Author: Tinku Tara

In-a-AB-C-a-b-c-2-h-a-h-b-h-c-a-2-b-2-c-2-6abc-h-a-2-h-b-2-h-c-2-6h-a-h-b-h-c-find-A-

Question Number 75849 by behi83417@gmail.com last updated on 18/Dec/19 $$\boldsymbol{\mathrm{In}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{A}}\overset{\bigtriangleup} {\boldsymbol{\mathrm{B}C}}: \\ $$$$\begin{cases}{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{b}}+\boldsymbol{\mathrm{c}}=\mathrm{2}\left(\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{a}}} +\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{b}}} +\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{c}}} \right)}\\{\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{b}}^{\mathrm{2}} +\boldsymbol{\mathrm{c}}^{\mathrm{2}} =\mathrm{6}\boldsymbol{\mathrm{abc}}}\\{\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{a}}} ^{\mathrm{2}} +\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{b}}} ^{\mathrm{2}} +\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{c}}} ^{\mathrm{2}} =\mathrm{6}\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{a}}}…

Let-a-b-0-Prove-that-a-b-2-3-27-2-a-2-ab-b-2-

Question Number 141381 by loveineq last updated on 19/May/21 $$\mathrm{Let}\:\:{a},{b}\:\geqslant\:\mathrm{0}\:.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({a}+{b}+\mathrm{2}\right)^{\mathrm{3}} \:\geqslant\:\frac{\mathrm{27}}{\mathrm{2}}\left({a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} \right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact:…

sin-5-x-2-sinx-1-x-0-2-

Question Number 75846 by behi83417@gmail.com last updated on 18/Dec/19 $$\boldsymbol{\mathrm{sin}}^{\mathrm{5}} \boldsymbol{\mathrm{x}}+\sqrt{\mathrm{2}}\boldsymbol{\mathrm{sinx}}=\mathrm{1}\:\:\:\:\:\:\:\:,\:\:\boldsymbol{\mathrm{x}}\in\left[\mathrm{0},\mathrm{2}\boldsymbol{\pi}\right] \\ $$ Answered by MJS last updated on 18/Dec/19 $${t}=\mathrm{sin}\:{x} \\ $$$${t}^{\mathrm{5}} +\sqrt{\mathrm{2}}{t}−\mathrm{1}=\mathrm{0} \\…

tgx-tgy-1-tgx-tgy-tg-x-2-tgx-tgy-1-tgxtgy-tg-y-2-

Question Number 75847 by behi83417@gmail.com last updated on 18/Dec/19 $$\begin{cases}{\frac{\boldsymbol{\mathrm{tgx}}−\boldsymbol{\mathrm{tgy}}}{\mathrm{1}−\boldsymbol{\mathrm{tgx}}.\boldsymbol{\mathrm{tgy}}}=\boldsymbol{\mathrm{tg}}\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}}\\{\:\:\frac{\boldsymbol{\mathrm{tgx}}+\boldsymbol{\mathrm{tgy}}}{\mathrm{1}+\boldsymbol{\mathrm{tgxtgy}}}=\boldsymbol{\mathrm{tg}}\frac{\boldsymbol{\mathrm{y}}}{\mathrm{2}}}\end{cases} \\ $$ Commented by MJS last updated on 19/Dec/19 $$\mathrm{the}\:\mathrm{path}\:\mathrm{is} \\ $$$$\mathrm{let}\:{x}=\mathrm{2arctan}\:{p};\:{y}=\mathrm{2arctan}\:{q} \\ $$$$\Rightarrow \\…

An-helium-atom-has-a-mass-of-6-64-10-27-kg-and-a-charge-Q-is-2-electron-Compare-the-magnitude-of-the-electric-repultion-to-that-of-the-gravitational-attraction-between-them-

Question Number 10309 by Tawakalitu ayo mi last updated on 03/Feb/17 $$\mathrm{An}\:\mathrm{helium}\:\mathrm{atom}\:\mathrm{has}\:\mathrm{a}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{6}.\mathrm{64}×\mathrm{10}^{−\mathrm{27}} \mathrm{kg} \\ $$$$\mathrm{and}\:\mathrm{a}\:\mathrm{charge}\:\mathrm{Q}\:\mathrm{is}\:+\mathrm{2}\:\mathrm{electron}.\:\mathrm{Compare}\:\mathrm{the} \\ $$$$\mathrm{magnitude}\:\mathrm{of}\:\mathrm{the}\:\mathrm{electric}\:\mathrm{repultion}\:\mathrm{to}\:\mathrm{that} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{gravitational}\:\mathrm{attraction}\:\mathrm{between}\:\mathrm{them}. \\ $$ Terms of Service Privacy…

x-yz-x-2-y-xz-y-2-z-xy-z-2-solve-for-x-y-z-

Question Number 75845 by behi83417@gmail.com last updated on 18/Dec/19 $$\begin{cases}{\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{yz}}=\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\\{\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{xz}}=\boldsymbol{\mathrm{y}}^{\mathrm{2}} }\\{\boldsymbol{\mathrm{z}}+\boldsymbol{\mathrm{xy}}=\boldsymbol{\mathrm{z}}^{\mathrm{2}} }\end{cases}\:\:\:\:\:\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{x}},\boldsymbol{\mathrm{y}},\boldsymbol{\mathrm{z}}. \\ $$ Commented by mr W last updated on 18/Dec/19 $${x}={y}={z}=\mathrm{0} \\…

prove-that-n-0-5n-2-5n-3-5n-1-5n-4-1-5-2-

Question Number 141378 by mnjuly1970 last updated on 18/May/21 $$\:\:\:{prove}\:{that}:: \\ $$$$\:\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\prod}}\frac{\left(\mathrm{5}{n}+\mathrm{2}\right)\left(\mathrm{5}{n}+\mathrm{3}\right)}{\left(\mathrm{5}{n}+\mathrm{1}\right)\left(\mathrm{5}{n}+\mathrm{4}\right)}\:=\varphi\: \\ $$$$\:\:\:\:\:\:\:\varphi:=\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$ Answered by Dwaipayan Shikari last updated on…