Menu Close

Author: Tinku Tara

prove-that-determinant-1-1-1-x-y-z-x-2-y-2-z-2-x-y-y-z-z-y-

Question Number 10245 by j.masanja06@gmail.com last updated on 31/Jan/17 $$\mathrm{prove}\:\mathrm{that}\: \\ $$$$\begin{vmatrix}{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{x}}&{\mathrm{y}}&{\mathrm{z}}\\{\mathrm{x}^{\mathrm{2}} }&{\mathrm{y}^{\mathrm{2}} }&{\mathrm{z}^{\mathrm{2}} }\end{vmatrix}=\left(\mathrm{x}−\mathrm{y}\right)\left(\mathrm{y}−\mathrm{z}\right)\left(\mathrm{z}−\mathrm{y}\right) \\ $$ Answered by prakash jain last updated on 31/Jan/17…

solve-the-eqution-determinant-x-3-1-1-7-x-5-1-6-6-x-1-0-

Question Number 10243 by j.masanja06@gmail.com last updated on 31/Jan/17 $$\mathrm{solve}\:\mathrm{the}\:\mathrm{eqution} \\ $$$$\:\:\:\:\:\begin{vmatrix}{\mathrm{x}−\mathrm{3}}&{\mathrm{1}}&{−\mathrm{1}}\\{−\mathrm{7}}&{\mathrm{x}+\mathrm{5}}&{−\mathrm{1}}\\{−\mathrm{6}}&{\mathrm{6}}&{\mathrm{x}−\mathrm{1}}\end{vmatrix}=\mathrm{0} \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com