Question Number 141323 by mathocean1 last updated on 17/May/21 Answered by mr W last updated on 17/May/21 Commented by mr W last updated on 17/May/21…
Question Number 141322 by mnjuly1970 last updated on 17/May/21 $$\:\:\:\:\:……{advanced}……..{calculus}……. \\ $$$$\:{prove}\:{that}:: \\ $$$$\:\:\:\xi:=\underset{{n}=\mathrm{2}} {\overset{\infty} {\prod}}{e}\left(\mathrm{1}−\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)^{{n}^{\mathrm{2}} } =\frac{\pi}{{e}\sqrt{{e}}} \\ $$$$ \\ $$ Terms of…
Question Number 10248 by j.masanja06@gmail.com last updated on 31/Jan/17 $$\mathrm{solve}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x} \\ $$$$\:\:\:\mathrm{logx}^{\mathrm{2}} =\frac{\mathrm{x}}{\mathrm{25}} \\ $$ Answered by mrW1 last updated on 01/Feb/17 $${I}.\:{if}\:{x}>\mathrm{0}: \\ $$$$\mathrm{log}\:{x}^{\mathrm{2}}…
Question Number 75783 by mr W last updated on 17/Dec/19 Commented by mr W last updated on 17/Dec/19 $${find}\:{the}\:{area}\:{missing}. \\ $$ Answered by mr W…
Question Number 141319 by mnjuly1970 last updated on 18/May/21 $$\:\:\: \\ $$$$\:\:\:\:\:{prove}:: \\ $$$$\:\:\:\:\:\:\:\Omega:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}^{\mathrm{2}} \left({x}\right)}{\mathrm{1}−{x}^{\mathrm{4}} }{dx}\:=\frac{\pi^{\mathrm{3}} }{\mathrm{32}}+\frac{\mathrm{7}}{\mathrm{8}}\zeta\left(\mathrm{3}\right).. \\ $$ Answered by qaz last…
Question Number 10245 by j.masanja06@gmail.com last updated on 31/Jan/17 $$\mathrm{prove}\:\mathrm{that}\: \\ $$$$\begin{vmatrix}{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{x}}&{\mathrm{y}}&{\mathrm{z}}\\{\mathrm{x}^{\mathrm{2}} }&{\mathrm{y}^{\mathrm{2}} }&{\mathrm{z}^{\mathrm{2}} }\end{vmatrix}=\left(\mathrm{x}−\mathrm{y}\right)\left(\mathrm{y}−\mathrm{z}\right)\left(\mathrm{z}−\mathrm{y}\right) \\ $$ Answered by prakash jain last updated on 31/Jan/17…
Question Number 141313 by 777316 last updated on 17/May/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 75778 by mr W last updated on 16/Dec/19 $${if}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={p},\:{x}^{\mathrm{3}} +{y}^{\mathrm{3}} ={q}, \\ $$$${find}\:{x}^{{n}} +{y}^{{n}} \:{in}\:{terms}\:{of}\:{p},\:{q}\:{and}\:{n}. \\ $$$$\left({n}\geqslant\mathrm{4}\right) \\ $$ Answered by…
Question Number 10243 by j.masanja06@gmail.com last updated on 31/Jan/17 $$\mathrm{solve}\:\mathrm{the}\:\mathrm{eqution} \\ $$$$\:\:\:\:\:\begin{vmatrix}{\mathrm{x}−\mathrm{3}}&{\mathrm{1}}&{−\mathrm{1}}\\{−\mathrm{7}}&{\mathrm{x}+\mathrm{5}}&{−\mathrm{1}}\\{−\mathrm{6}}&{\mathrm{6}}&{\mathrm{x}−\mathrm{1}}\end{vmatrix}=\mathrm{0} \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 141312 by qaz last updated on 17/May/21 $$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{{Si}\left(\mathrm{2}\pi{n}\right)−\frac{\pi}{\mathrm{2}}}{{n}}=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com