Menu Close

Author: Tinku Tara

2-2-matrix-A-and-B-satisfy-that-AB-A-BA-B-Prove-that-A-B-2-O-

Question Number 204957 by CrispyXYZ last updated on 03/Mar/24 $$\mathrm{2}×\mathrm{2}\:\mathrm{matrix}\:\boldsymbol{\mathrm{A}}\:\mathrm{and}\:\boldsymbol{\mathrm{B}}\:\mathrm{satisfy}\:\mathrm{that} \\ $$$$\boldsymbol{\mathrm{AB}}+\boldsymbol{\mathrm{A}}=\boldsymbol{\mathrm{BA}}+\boldsymbol{\mathrm{B}}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\left(\boldsymbol{\mathrm{A}}−\boldsymbol{\mathrm{B}}\right)^{\mathrm{2}} =\boldsymbol{\mathrm{O}}. \\ $$ Answered by Rajpurohith last updated on 04/Mar/24 $${Need}\:{not}\:{hold}\:{true}!…

Prove-that-in-any-ABC-m-a-m-b-m-c-2-9-3-F-

Question Number 204926 by hardmath last updated on 02/Mar/24 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{in}\:\mathrm{any}\:\bigtriangleup\mathrm{ABC} \\ $$$$\left(\mathrm{m}_{\boldsymbol{\mathrm{a}}} \:+\:\mathrm{m}_{\boldsymbol{\mathrm{b}}} \:+\:\mathrm{m}_{\boldsymbol{\mathrm{c}}} \right)^{\mathrm{2}} \:\geqslant\:\mathrm{9}\sqrt{\mathrm{3}}\:\mathrm{F} \\ $$ Commented by A5T last updated on 02/Mar/24…

Question-204921

Question Number 204921 by mathlove last updated on 02/Mar/24 Answered by Frix last updated on 02/Mar/24 $$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{dx}}{\:\sqrt{{x}+\mathrm{3}}+\sqrt{{x}+\mathrm{1}}}=\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\sqrt{{x}+\mathrm{3}}−\sqrt{{x}+\mathrm{1}}{dx}= \\ $$$$=\left[\frac{\left({x}+\mathrm{3}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\left({x}+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{3}}\right]_{\mathrm{0}}…

Question-204944

Question Number 204944 by mr W last updated on 02/Mar/24 Commented by mr W last updated on 03/Mar/24 $${the}\:{distances}\:{from}\:{a}\:{point}\:{inside} \\ $$$${a}\:{triangle}\:{to}\:{its}\:{vertexes}\:{are}\:{p},\:{q},\:{r} \\ $$$${respectively}.\:{find}\:{the}\:{maximum} \\ $$$${area}\:{of}\:{the}\:{triangle}\:{and}\:{its}\:{sides}.…

lim-n-r-1-n-n-2-r-n-2-r-

Question Number 204929 by universe last updated on 02/Mar/24 $$\:\:\:\:\:\:\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\prod}}\:\frac{{n}^{\mathrm{2}} −{r}}{{n}^{\mathrm{2}} +{r}}\:\:=\:\:? \\ $$ Answered by witcher3 last updated on 02/Mar/24 $$\underset{\mathrm{r}=\mathrm{1}}…