Question Number 75660 by mr W last updated on 15/Dec/19 $${find}\:{all}\:{solutions}\:\left({if}\:{exist}\right)\:{of} \\ $$$${x}^{\mathrm{2}} +\mathrm{5}{y}^{\mathrm{2}} =\mathrm{2016} \\ $$$${with}\:{x},{y}\:\in\:\mathbb{N}. \\ $$ Commented by mathmax by abdo last…
Question Number 141198 by ajfour last updated on 16/May/21 Commented by ajfour last updated on 17/May/21 $${Material}\:{volume}\:{of}\:{sphere} \\ $$$${minus}\:{ellipsoid}\:{is}\:\frac{\mathrm{4}}{\mathrm{3}}\pi{c}\:. \\ $$$${Find}\:{radius}\:{of}\:{sphere}\:{R}. \\ $$$${The}\:{ellipsoid}'{s}\:{radii}\:{are} \\ $$$$\:\:\:{r}_{\mathrm{1}}…
Question Number 75661 by peter frank last updated on 15/Dec/19 Answered by Kunal12588 last updated on 15/Dec/19 $${U}_{{n}} =\int{x}^{{n}} \:{cos}\:{x}\:{dx} \\ $$$${u}\:=\:{x}^{{n}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\&\:\:\:\:{dv}\:=\:{cos}\:{x}\:{dx} \\ $$$$\Rightarrow{du}\:=\:{nx}^{{n}−\mathrm{1}}…
Question Number 10124 by konen last updated on 25/Jan/17 $$\mathrm{x}=\mathrm{4}^{\left(−\mathrm{2}\right)^{−\mathrm{1}} } \\ $$$$\mathrm{y}=\left(\mathrm{0}.\mathrm{4}\right)^{−\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{2x}+\mathrm{4y}=? \\ $$ Answered by FilupSmith last updated on 25/Jan/17 $${x}=\mathrm{4}^{\left(−\mathrm{2}\right)^{−\mathrm{1}}…
Question Number 141193 by Eric002 last updated on 16/May/21 $${A}=\begin{bmatrix}{\mathrm{2}\:\:}&{\mathrm{1}}&{−\mathrm{1}}\\{−\mathrm{3}}&{−\mathrm{1}}&{\mathrm{2}}\\{−\mathrm{2}}&{\mathrm{1}}&{\mathrm{2}}\end{bmatrix}{find}\:{the}\:{inverse}\:{of}\:\:{this}\:{matrix} \\ $$$$ \\ $$ Answered by bramlexs22 last updated on 16/May/21 $$\:{Cayley}−{Hamilton}\:{theorem} \\ $$$$\:\mid{A}−\lambda{I}\mid\:=\:\mathrm{0} \\…
Question Number 75656 by mr W last updated on 15/Dec/19 Commented by mr W last updated on 15/Dec/19 $${find}\:{the}\:{shaded}\:{area}. \\ $$ Commented by mind is…
Question Number 10121 by JAZAR last updated on 25/Jan/17 $${tank}\:{you} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 141189 by Eric002 last updated on 16/May/21 $${find}\:{the}\:{area}\:{of}\:{the}\:{shaded}\:{region} \\ $$$${shown}\:{below}\:{which}\:{is}\:{boinded}\:{by}\:{to}\:{functions}\: \\ $$$${f}\left({x}\right)={x}^{\mathrm{2}} \:\:{g}\left({x}\right)=\mathrm{2}−{x}\:{and}\:{the}\:{x}-{axis} \\ $$$$ \\ $$ Commented by Eric002 last updated on…
Question Number 75655 by mr W last updated on 15/Dec/19 $${if}\:{z}\:\in\:\mathbb{C} \\ $$$${is}\:\mathrm{sin}^{\mathrm{2}} \:{z}+\mathrm{cos}^{\mathrm{2}} \:{z}=\mathrm{1}\:{also}\:{valid}? \\ $$ Answered by MJS last updated on 15/Dec/19 $$\mathrm{yes}.…
Question Number 10118 by Gaurav3651 last updated on 25/Jan/17 $${Let}\:{f}:\mathbb{R}\rightarrow\mathbb{R}\:{be}\:{a}\:{function}\:{such}\:{that} \\ $$$${f}\left({x}\right)={x}^{\mathrm{3}} +{x}^{\mathrm{2}} {f}'\left(\mathrm{1}\right)+{xf}''\left(\mathrm{2}\right)+{f}'''\left(\mathrm{3}\right) \\ $$$${for}\:{x}\in\mathbb{R}. \\ $$$$\left.\mathrm{1}\right){What}\:{is}\:{f}\left(\mathrm{1}\right)\:{equal}\:{to}? \\ $$$$\left.\mathrm{2}\right){What}\:{is}\:{f}'\left(\mathrm{1}\right)\:{equal}\:{to}? \\ $$$$\left.\mathrm{3}\right){What}\:{is}\:{f}'''\left(\mathrm{10}\right)\:{equal}\:{to}? \\ $$$${For}\:{this}\:{question}\:{consider}\:{the}\:{following}: \\…