Menu Close

Author: Tinku Tara

4-sin-30-tan-45-cosec-60-sec-30-cos-60-cot-45-1-2-1-2-3-2-3-1-2-1-v-3-2-3-4-2-3-4-3-2-3-2-3-3-3-

Question Number 204905 by Manishkumar last updated on 02/Mar/24 $$\mathrm{4}.\:\frac{\mathrm{sin}\:\mathrm{30}^{°} \:+\:\mathrm{tan}\:\mathrm{45}^{°} \:−\:\mathrm{cosec}\:\mathrm{60}^{°} }{\mathrm{sec}\:\mathrm{30}^{°} \:+\:\mathrm{cos}\:\mathrm{60}^{°} \:+\:\mathrm{cot}\:\mathrm{45}^{°} } \\ $$$$ \\ $$$$=\:\frac{\mathrm{1}/\mathrm{2}\:+\:\mathrm{1}\:−\:\mathrm{2}/\sqrt{\mathrm{3}}}{\mathrm{2}/\sqrt{\mathrm{3}}\:+\:\mathrm{1}/\mathrm{2}\:+\:\mathrm{1}\:\:\mathrm{v}} \\ $$$$=\:\frac{\frac{\sqrt{\mathrm{3}}\:+\:\mathrm{2}\sqrt{\mathrm{3}}\:−\:\mathrm{4}}{\mathrm{2}\sqrt{\mathrm{3}}}}{\frac{\mathrm{4}\:+\:\sqrt{\mathrm{3}}\:+\:\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{2}\sqrt{\mathrm{3}}}} \\ $$$$ \\…

lim-n-n-e-x-n-where-x-n-1-1-1-1-2-1-n-

Question Number 204900 by universe last updated on 01/Mar/24 $$\:\:\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{n}!\left({e}−\mathrm{x}_{\mathrm{n}} \right)\:=\:? \\ $$$$\:\:\mathrm{where}\:\mathrm{x}_{\mathrm{n}\:} =\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}!}+\frac{\mathrm{1}}{\mathrm{2}!}+…+\frac{\mathrm{1}}{\mathrm{n}!} \\ $$ Commented by Frix last updated on 01/Mar/24 $${x}_{{n}}…

calculate-0-1-x-1-x-dx-

Question Number 204902 by pticantor last updated on 01/Mar/24 $$\boldsymbol{{calculate}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\boldsymbol{{x}}\left(\mathrm{1}−\boldsymbol{{x}}\right)}\boldsymbol{{dx}} \\ $$ Answered by witcher3 last updated on 01/Mar/24 $$\mathrm{y}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} −\mathrm{x}=\mathrm{0}\Leftrightarrow\mathrm{y}^{\mathrm{2}} +\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}}…

lim-n-n-e-x-n-where-x-n-1-1-1-1-2-1-n-

Question Number 204879 by universe last updated on 09/Aug/24 $$\:\:\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{n}!\left({e}−\mathrm{x}_{\mathrm{n}} \right)\:=\:? \\ $$$$\:\:\mathrm{where}\:\mathrm{x}_{\mathrm{n}\:} =\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}!}+\frac{\mathrm{1}}{\mathrm{2}!}+…+\frac{\mathrm{1}}{\mathrm{n}!} \\ $$ Commented by mr W last updated on 01/Mar/24…

The-figure-below-represents-a-design-on-the-windows-of-a-building-The-curved-part-XY-is-an-arc-of-a-circle-The-rise-of-the-segmental-arc-is-10cm-its-span-is-100cm-and-XZ-ZY-120cm-calculate-i-th

Question Number 204873 by necx122 last updated on 29/Feb/24 $${The}\:{figure}\:{below}\:{represents}\:{a}\:{design} \\ $$$${on}\:{the}\:{windows}\:{of}\:{a}\:{building}.\:{The} \\ $$$${curved}\:{part}\:{XY}\:{is}\:{an}\:{arc}\:{of}\:{a}\:{circle}. \\ $$$${The}\:{rise}\:{of}\:{the}\:{segmental}\:{arc}\:{is}\:\mathrm{10}{cm}, \\ $$$${its}\:{span}\:{is}\:\mathrm{100}{cm}\:{and}\:{XZ}={ZY}=\mathrm{120}{cm}. \\ $$$${calculate}: \\ $$$$\left({i}\right)\:{the}\:{radius}\:{of}\:{the}\:{circle} \\ $$$$\left({ii}\right)\:{the}\:{area}\:{of}\:{the}\:{segmental}\:{cap}, \\…