Menu Close

Author: Tinku Tara

Find-the-smallest-value-5x-16-x-21-over-positive-value-of-x-

Question Number 141136 by bobhans last updated on 16/May/21 $$\:\:\:\:{Find}\:{the}\:{smallest}\:{value}\: \\ $$$$\:\:\:\:\mathrm{5}{x}\:+\:\frac{\mathrm{16}}{{x}}\:+\:\mathrm{21}\:{over}\:{positive}\: \\ $$$$\:\:\:{value}\:{of}\:{x}\: \\ $$ Answered by iloveisrael last updated on 16/May/21 $$\:\Rightarrow\:\mathrm{5}{x}\:\&\:\frac{\mathrm{16}}{{x}}\:{have}\:{a}\:{constant}\:{product} \\…

if-a-2-b-2-3ab-then-prove-that-log-a-b-5-1-2-loga-logb-

Question Number 10064 by PradipGos. last updated on 22/Jan/17 $$\mathrm{if}\:\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} =\mathrm{3ab}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\: \\ $$$$\mathrm{log}\frac{\mathrm{a}+\mathrm{b}}{\:\sqrt{\mathrm{5}}}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{log}{a}+\mathrm{log}{b}\right) \\ $$$$ \\ $$ Answered by ridwan balatif last updated on…

Question-10062

Question Number 10062 by ridwan balatif last updated on 22/Jan/17 Commented by ridwan balatif last updated on 22/Jan/17 $$\mathrm{find}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{of}\:\mathrm{the}\:\mathrm{division}\:\mathrm{20}^{\mathrm{2017}} +\mathrm{1}^{\mathrm{2017}} +\mathrm{17}^{\mathrm{2017}} +\mathrm{72}^{\mathrm{2017}} \:\mathrm{by}\:\mathrm{2017} \\ $$…

Find-the-minimum-of-12-x-18-y-xy-for-all-positive-number-x-amp-y-

Question Number 141135 by bobhans last updated on 16/May/21 $$\:\:\:\:\:\:\:{Find}\:{the}\:{minimum}\:{of}\: \\ $$$$\:\:\:\:\:\:\frac{\mathrm{12}}{{x}}\:+\:\frac{\mathrm{18}}{{y}}\:+\:{xy}\:{for}\:{all}\: \\ $$$$\:\:\:\:\:\:{positive}\:{number}\:{x}\:\&\:{y}\:. \\ $$ Answered by mitica last updated on 16/May/21 $$\frac{\mathrm{12}}{{x}}+\frac{\mathrm{18}}{{y}}+{xy}\geqslant\mathrm{3}\sqrt[{\mathrm{3}}]{\frac{\mathrm{12}}{{x}}\centerdot\frac{\mathrm{18}}{{y}}\centerdot{xy}}=\mathrm{18} \\…

Question-75597

Question Number 75597 by aliesam last updated on 13/Dec/19 Commented by mathmax by abdo last updated on 13/Dec/19 $${let}\:{f}\left({x}\right)=\frac{\left({cosx}\right)^{\frac{\mathrm{1}}{{m}}} −\left({cosx}\right)^{\frac{\mathrm{1}}{{n}}} }{{x}^{\mathrm{2}} }\:\:{we}\:{have} \\ $$$${cosx}\:\sim\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow\left({cosx}\right)^{\frac{\mathrm{1}}{{m}}}…