Question Number 141057 by mnjuly1970 last updated on 15/May/21 $$ \\ $$$$\:\:\:\:\:\:\:…..\mathscr{N}{ice}\:……\:\:……\mathscr{C}{alculus}….. \\ $$$$\:\:\:{prove}\:{that}: \\ $$$$\:\Omega\left({x}\right):=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{a}^{{n}} .\frac{{sin}\left({nx}\right)}{{n}!}={e}^{{acos}\left({x}\right)} {sin}\left({asin}\left({x}\right)\right) \\ $$$$\:\:\:….{m}.{n} \\ $$ Answered…
Question Number 9987 by konen last updated on 20/Jan/17 $$\mathrm{x}=\mathrm{199996} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{8x}=\mathrm{a10}^{\mathrm{b}} −\mathrm{c} \\ $$$$\Rightarrow\:\mathrm{a}+\mathrm{b}+\mathrm{c}=? \\ $$ Answered by ridwan balatif last updated on…
Question Number 9986 by lepan last updated on 20/Jan/17 $${In}\:\Delta{ABC}\:,{sinA}:{sinB}:{sinC}=\mathrm{5}:\mathrm{7}:\mathrm{8}. \\ $$$${Find}\:\angle{ABC}. \\ $$ Answered by mrW1 last updated on 20/Jan/17 $${sinA}:{sinB}:{sinC}=\mathrm{5}:\mathrm{7}:\mathrm{8} \\ $$$$ \\…
Question Number 75521 by vishalbhardwaj last updated on 12/Dec/19 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{between}\:\mathrm{the}\:\mathrm{lines} \\ $$$$\mathrm{whose}\:\mathrm{direction}\:\mathrm{cosines}\:\mathrm{are}\:\mathrm{given} \\ $$$$\mathrm{by}\:{l}+{m}+{n}\:=\:\mathrm{0}\:\mathrm{and}\:{l}^{\mathrm{2}} +{m}^{\mathrm{2}} −{n}^{\mathrm{2}} \:=\:\mathrm{0}\:?? \\ $$ Commented by mr W last updated…
Question Number 75518 by aliesam last updated on 12/Dec/19 Answered by mr W last updated on 12/Dec/19 Commented by mr W last updated on 12/Dec/19…
Question Number 9982 by Tawakalitu ayo mi last updated on 20/Jan/17 Answered by sandy_suhendra last updated on 20/Jan/17 $$\left(\mathrm{1a}\right)\:\mathrm{1}\:\mathrm{atm}=\mathrm{760}\:\mathrm{mmHg} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{30}\:\mathrm{mmHg}=\frac{\mathrm{30}}{\mathrm{760}}\:\mathrm{atm}=\mathrm{0}.\mathrm{0395}\:\mathrm{atm} \\ $$$$\left(\mathrm{1b}\right)\:\mathrm{1}\:\mathrm{torr}=\mathrm{1}\:\mathrm{mmHg} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{30}\:\mathrm{mmHg}=\mathrm{30}\:\mathrm{torr}…
Question Number 75512 by Master last updated on 12/Dec/19 Commented by MJS last updated on 12/Dec/19 $$\mathrm{this}\:\mathrm{is}\:\mathrm{a}\:\mathrm{standard}\:\mathrm{integral};\:\mathrm{you}\:\mathrm{can}\:\mathrm{find}\:\mathrm{it}\:\mathrm{on} \\ $$$$\mathrm{any}\:\mathrm{table}\:\mathrm{of}\:\mathrm{integrals} \\ $$ Commented by JDamian last…
Question Number 9977 by konen last updated on 20/Jan/17 Answered by sandy_suhendra last updated on 20/Jan/17 $$\mathrm{log}_{\mathrm{3}^{\mathrm{2}} } \:\left(\mathrm{x}−\mathrm{6}\right)^{\mathrm{2}} \:=\:\mathrm{log}_{\mathrm{9}} \:\left(\mathrm{x}−\mathrm{8}\right) \\ $$$$\left(\mathrm{x}−\mathrm{6}\right)^{\mathrm{2}} =\mathrm{x}−\mathrm{8} \\…
Question Number 141050 by mathsuji last updated on 15/May/21 Answered by MJS_new last updated on 15/May/21 $$\sqrt{{p}}+\sqrt{{q}}=\sqrt{{r}} \\ $$$${p}+{q}+\mathrm{2}\sqrt{{pq}}={r} \\ $$$$\mathrm{2}\sqrt{{pq}}={r}−\left({p}+{q}\right) \\ $$$$\mathrm{4}{pq}=\left({r}−\left({p}+{q}\right)\right)^{\mathrm{2}} \\ $$$${p}^{\mathrm{2}}…
Question Number 9976 by konen last updated on 20/Jan/17 $$\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{4a}+\mathrm{6b}+\mathrm{13}=\mathrm{0}\:\: \\ $$$$\Rightarrow\:\mathrm{a}+\mathrm{b}=? \\ $$ Answered by prakash jain last updated on 20/Jan/17 $${a}^{\mathrm{2}}…