Question Number 9108 by tawakalitu last updated on 18/Nov/16 $$\int\mathrm{x}^{\mathrm{4}} \sqrt{\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{4}}\:\:\mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 140177 by liberty last updated on 05/May/21 $$\:\:\:\mathrm{solution}\:\mathrm{set}\:\mathrm{equation} \\ $$$$\:\:\:\mathrm{sin}\:^{\mathrm{6}} \mathrm{x}\:+\:\mathrm{cos}\:^{\mathrm{6}} \mathrm{x}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}\:^{\mathrm{2}} \mathrm{2x} \\ $$ Answered by som(math1967) last updated on 05/May/21 $$\left({sin}^{\mathrm{2}}…
Question Number 9107 by jainamanj98@gmail.com last updated on 18/Nov/16 Answered by FilupSmith last updated on 19/Nov/16 $$\left(\mathrm{1}\right) \\ $$$$\int_{\mathrm{1}} ^{\mathrm{3}} \left({x}+\mathrm{3}\sqrt{{x}}\right){dx}=\int_{\mathrm{1}} ^{\mathrm{3}} {xdx}+\mathrm{3}\int_{\mathrm{1}} ^{\mathrm{3}} {x}^{\mathrm{1}/\mathrm{2}}…
Question Number 140176 by EDWIN88 last updated on 05/May/21 $$\mathrm{Let}\:\mathrm{V}\:\mathrm{be}\:\mathrm{a}\:\mathrm{vector}\:\mathrm{space}\:\mathrm{of}\:\mathrm{polynomials} \\ $$$$\mathrm{p}\left(\mathrm{x}\right)=\:\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{\mathrm{2}} \:\mathrm{with}\:\mathrm{real}\:\mathrm{coefficients} \\ $$$$\mathrm{a},\mathrm{b}\:\mathrm{and}\:\mathrm{c}.\:\mathrm{Define}\:\mathrm{an}\:\mathrm{inner}\:\mathrm{product}\:\mathrm{on}\:\mathrm{V} \\ $$$$\mathrm{by}\:\left(\mathrm{p},\mathrm{q}\right)=\frac{\mathrm{1}}{\mathrm{2}}\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\mathrm{p}\left(\mathrm{x}\right)\mathrm{q}\left(\mathrm{x}\right)\:\mathrm{dx}\:. \\ $$$$\left(\mathrm{a}\right)\:\mathrm{Find}\:\mathrm{a}\:\mathrm{orthonormal}\:\mathrm{basis}\:\mathrm{for}\:\mathrm{V}\:\mathrm{consisting} \\ $$$$\mathrm{of}\:\mathrm{polynomials}\:\phi_{\mathrm{o}} \left(\mathrm{x}\right)\:,\:\phi_{\mathrm{1}} \left(\mathrm{x}\right)\:\mathrm{and}\:\phi_{\mathrm{2}}…
Question Number 74639 by king@ last updated on 28/Nov/19 $${If} \\ $$ Commented by mr W last updated on 28/Nov/19 $${then}… \\ $$ Commented by…
Question Number 9101 by tawakalitu last updated on 18/Nov/16 Commented by mrW last updated on 18/Nov/16 $$\left.{b}\right) \\ $$$$\left.{see}\:{a}\right)\:{below} \\ $$$$\mathrm{15}{s}+\mathrm{4}={mv}\frac{{dv}}{{ds}} \\ $$$$\left(\mathrm{15}{s}+\mathrm{4}\right){ds}={mvdv} \\ $$$$\int\left(\mathrm{15}{s}+\mathrm{4}\right){ds}=\int{mvdv}…
Question Number 74637 by mathmax by abdo last updated on 28/Nov/19 $$\left.\mathrm{1}\right){calculate}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\mathrm{2}} \sqrt{{x}^{\mathrm{2}} +{t}^{\mathrm{2}} }{dt}\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{calculste}\:{g}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{\mathrm{2}} }{\:\sqrt{{x}^{\mathrm{2}} +{t}^{\mathrm{2}} }}{dt} \\…
Question Number 9100 by arinto27 last updated on 18/Nov/16 $$\mathrm{luas}\:\mathrm{segi}\:\mathrm{6}\:\mathrm{beraturan}\:\mathrm{dgn}\:\mathrm{panjang}\: \\ $$$$\mathrm{sisi}\:\mathrm{10}\:\mathrm{cm}\:\mathrm{adalah}…? \\ $$$$ \\ $$ Answered by sandy_suhendra last updated on 20/Nov/16 $$\mathrm{segi}\:\mathrm{6}\:\mathrm{beraturan}\:\mathrm{terdiri}\:\mathrm{dr}\:\mathrm{6}\:\mathrm{segitiga}\:\mathrm{sm}\:\mathrm{sisi} \\…
Question Number 74634 by Mr. K last updated on 27/Nov/19 Commented by Mr. K last updated on 28/Nov/19 $${The}\:{square}\:{is}\:{divided}\:{into}\:\mathrm{2}\:{triangles} \\ $$$${and}\:{one}\:{quadrilateral}.\:{The}\:{yellow} \\ $$$${area}\:{is}\:{S}\:{and}\:{the}\:{blue}\:{area}\:{is}\:\:\frac{{S}}{\mathrm{2}}. \\ $$$${Find}\:{AB}.…
Question Number 74632 by TawaTawa last updated on 27/Nov/19 $$. \\ $$ Commented by TawaTawa last updated on 27/Nov/19 The force F acting along an inclined plane is just sufficient to maintain a body on the plane, the angle of friction M being less than Y, the angle of plane. prove that the least force acting along the plane, sufficient to drag the body up the plane is : F sin( M + Y )/sin( M - Y) Terms of Service Privacy Policy…