Menu Close

Author: Tinku Tara

Question-74604

Question Number 74604 by TawaTawa last updated on 27/Nov/19 $$. \\ $$ Commented by TawaTawa last updated on 27/Nov/19 Six balls are identical in size; 2 are red,2 white and 2 green. In how many different ways can they be arranged in a circle touching each other? Commented by mr W last…

Question-9069

Question Number 9069 by tawakalitu last updated on 16/Nov/16 Commented by RasheedSoomro last updated on 20/Nov/16 $$\begin{cases}{\mathrm{x}+\mathrm{y}=\mathrm{2}}\\{\mathrm{xy}=\mathrm{4}}\\{\mathrm{S}_{\mathrm{n}} =\mathrm{x}^{\mathrm{n}} +\mathrm{y}^{\mathrm{n}} }\end{cases} \\ $$$$\mathrm{pS}_{\mathrm{n}} =\mathrm{S}_{\mathrm{n}+\mathrm{1}} +\mathrm{qS}_{\mathrm{n}−\mathrm{1}} \\…

Question-140139

Question Number 140139 by mathsuji last updated on 04/May/21 Answered by mr W last updated on 04/May/21 $${say}\:{radius}\:{of}\:{curcumcircle}\:{is}\:{r} \\ $$$$\Sigma\mathrm{sin}^{−\mathrm{1}} \frac{{a}}{\mathrm{2}{r}}=\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{6}}{\mathrm{2}{r}}+\mathrm{sin}\:\frac{\mathrm{3}}{\mathrm{2}{r}}+\mathrm{sin}^{−\mathrm{1}} \frac{\sqrt{\mathrm{11}}}{\mathrm{2}{r}}+\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{6}}{\mathrm{2}{r}}+\mathrm{sin}^{−\mathrm{1}} \frac{\sqrt{\mathrm{2}}}{\mathrm{2}{r}}=\pi…

Question-74600

Question Number 74600 by rajesh4661kumar@gmail.com last updated on 27/Nov/19 Answered by ajfour last updated on 27/Nov/19 $${L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\left\{\left(\frac{{a}^{{mx}} −\mathrm{1}}{{mx}}\right)/\left(\frac{{b}^{{nx}} −\mathrm{1}}{{nx}}\right)\right\}\left(\frac{{mx}}{{nx}}\right)\right] \\ $$$$\:{L}\:=\:\frac{{m}\mathrm{ln}\:{a}}{{n}\mathrm{ln}\:{b}}\:. \\ $$ Terms…

Hello-verry-Nice-day-let-U-n-E-3-17-2-n-n-N-show-that-U-n-n-2-

Question Number 74599 by mind is power last updated on 27/Nov/19 $$\mathrm{Hello},\mathrm{verry}\:\mathrm{Nice}\:\mathrm{day}\: \\ $$$$\mathrm{let}\:\mathrm{U}_{\mathrm{n}} =\mathrm{E}\left(\left(\frac{\mathrm{3}+\sqrt{\mathrm{17}}}{\mathrm{2}}\right)^{\mathrm{n}} \right),\mathrm{n}\in\mathbb{N}^{\ast} \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{U}_{\mathrm{n}} \equiv\mathrm{n}\left(\mathrm{2}\right) \\ $$ Terms of Service Privacy…