Menu Close

Author: Tinku Tara

If-2-x-3-y-6-z-find-the-value-of-1-x-1-y-1-z-

Question Number 8998 by tawakalitu last updated on 11/Nov/16 $$\mathrm{If}\:\:\mathrm{2}^{\mathrm{x}} \:=\:\mathrm{3}^{\mathrm{y}} \:=\:\mathrm{6}^{−\mathrm{z}} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\::\:\:\frac{\mathrm{1}}{\mathrm{x}}\:+\:\frac{\mathrm{1}}{\mathrm{y}}\:+\:\frac{\mathrm{1}}{\mathrm{z}} \\ $$ Answered by Rasheed Soomro last updated on 12/Nov/16 $$\mathrm{If}\:\:\mathrm{2}^{\mathrm{x}}…

For-what-value-of-k-is-the-following-continous-function-f-x-7x-2-6x-4-x-2-if-x-2-7-amp-x-2-k-if-x-2-

Question Number 140071 by EDWIN88 last updated on 04/May/21 $$\mathrm{For}\:\mathrm{what}\:\mathrm{value}\:\mathrm{of}\:\mathrm{k}\:\mathrm{is}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{continous}\:\mathrm{function}\:? \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\begin{cases}{\frac{\sqrt{\mathrm{7x}+\mathrm{2}}−\sqrt{\mathrm{6x}+\mathrm{4}}}{\mathrm{x}−\mathrm{2}}\:;\:\mathrm{if}\:\mathrm{x}\geqslant−\frac{\mathrm{2}}{\mathrm{7}}\:\&\:\mathrm{x}\neq\mathrm{2}}\\{\:\:\:\:\:\:\:\:\mathrm{k}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:;\:\mathrm{if}\:\mathrm{x}=\mathrm{2}}\end{cases} \\ $$ Answered by bobhans last updated on 04/May/21 $$\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\mathrm{f}\left(\mathrm{x}\right)=\underset{{x}\rightarrow\mathrm{2}}…

Find-the-nth-derivative-of-sin-2-2x-

Question Number 8996 by Basant007 last updated on 11/Nov/16 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{nth}\:\mathrm{derivative}\:\mathrm{of}\:\mathrm{sin}\:^{\mathrm{2}} \mathrm{2x} \\ $$ Commented by FilupSmith last updated on 13/Nov/16 $${y}=\mathrm{sin}^{\mathrm{2}} \left(\mathrm{2}{x}\right) \\ $$$${u}=\mathrm{sin}\left(\mathrm{2}{x}\right)\:\Rightarrow\:{du}=\mathrm{2cos}\left(\mathrm{2}{x}\right){dx} \\…

sin-e-2x-dx-

Question Number 8993 by tawakalitu last updated on 11/Nov/16 $$\int\mathrm{sin}\left(\mathrm{e}^{\mathrm{2x}} \right)\:\mathrm{dx} \\ $$ Commented by FilupSmith last updated on 12/Nov/16 $${u}={e}^{\mathrm{2}{x}} \:\Rightarrow\:{du}=\frac{\mathrm{1}}{\mathrm{2}}{e}^{\mathrm{2}{x}} {dx} \\ $$$$\int\mathrm{sin}\left({e}^{\mathrm{2}{x}}…

prove-that-1-2-tan-1-x-cos-1-1-1-x-2-2-1-x-2-using-substitution-x-cos-2-

Question Number 74526 by Kunal12588 last updated on 25/Nov/19 $${prove}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{tan}^{−\mathrm{1}} {x}={cos}^{−\mathrm{1}} \left(\sqrt{\frac{\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{\mathrm{2}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}}\right) \\ $$$${using}\:{substitution}\:{x}={cos}\:\mathrm{2}\theta \\ $$ Answered by mind is power…