Menu Close

Author: Tinku Tara

Question-74527

Question Number 74527 by Maclaurin Stickker last updated on 25/Nov/19 Commented by Maclaurin Stickker last updated on 25/Nov/19 $${In}\:{the}\:{figure}\:{determine}\:{the}\:{radius} \\ $$$${of}\:{the}\:{smallest}\:{circumference}\:{as}\:{a} \\ $$$${function}\:{of}\:{the}\:{radius}\:\boldsymbol{\mathrm{R}}\:{of}\:{the}\:{quadrant}. \\ $$…

prove-k-1-n-k-k-1-k-k-1-k-2-3-

Question Number 8988 by Daily last updated on 10/Nov/16 $${prove} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}\left({k}+\mathrm{1}\right)={k}\left({k}+\mathrm{1}\right)\left({k}+\mathrm{2}\right)/\mathrm{3} \\ $$ Answered by 123456 last updated on 11/Nov/16 $${s}\left({n}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}}…

A-rope-inclined-at-angle-37-to-the-horizontal-is-used-to-drag-a-50kg-block-along-a-level-floor-with-an-acceleration-of-1m-s-2-The-coefficient-of-friction-between-the-block-and-the-floor-is-0-2-Wh

Question Number 74522 by necxxx last updated on 25/Nov/19 $${A}\:{rope}\:{inclined}\:{at}\:{angle}\:\mathrm{37}°\:{to}\:{the}\: \\ $$$${horizontal}\:{is}\:{used}\:{to}\:{drag}\:{a}\:\mathrm{50}{kg}\:{block} \\ $$$${along}\:{a}\:{level}\:{floor}\:{with}\:{an}\:{acceleration} \\ $$$${of}\:\mathrm{1}{m}/{s}^{\mathrm{2}} \:.{The}\:{coefficient}\:{of}\:{friction} \\ $$$${between}\:{the}\:{block}\:{and}\:{the}\:{floor}\:{is}\:\mathrm{0}.\mathrm{2}. \\ $$$${What}\:{is}\:{the}\:{tension}\:{in}\:{the}\:{rope}? \\ $$ Commented by…

Prove-the-folowing-result-0-pi-2-cot-log-sec-3-d-pi-4-240-I-need-your-help-if-possible-please-

Question Number 140056 by Ndala last updated on 03/May/21 $$\mathrm{Prove}\:\mathrm{the}\:\mathrm{folowing}\:\mathrm{result}: \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cot}\:\theta\centerdot\left(\mathrm{log}\:\mathrm{sec}\:\theta\right)^{\mathrm{3}} {d}\theta=\frac{\pi^{\mathrm{4}} }{\mathrm{240}} \\ $$$$. \\ $$$$\mathrm{I}\:\mathrm{need}\:\mathrm{your}\:\mathrm{help},\:\mathrm{if}\:\mathrm{possible}\:\mathrm{please}. \\ $$ Answered by Ar…

Question-74520

Question Number 74520 by chess1 last updated on 25/Nov/19 Answered by MJS last updated on 26/Nov/19 $$\mathrm{0}\leqslant{x}<\mathrm{2}\pi \\ $$$$\mathrm{tan}\:{x}\:>\mathrm{sin}\:{x} \\ $$$$\frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}>\mathrm{sin}\:{x} \\ $$$$\mathrm{case}\:\mathrm{1}:\:\mathrm{sin}\:{x}\:>\mathrm{0}\:\Leftrightarrow\:\mathrm{0}<{x}<\pi \\ $$$$\frac{\mathrm{1}}{\mathrm{cos}\:{x}}>\mathrm{1}\:\Leftrightarrow\:\mathrm{0}<{x}<\frac{\pi}{\mathrm{2}}\vee\frac{\mathrm{3}\pi}{\mathrm{2}}<{x}<\mathrm{2}\pi…

prove-that-0-1-e-x-1-e-2x-dx-x-ln-2-1-4-4-2pi-n-1-2n-1-2n-1-n-1-e-

Question Number 140055 by mnjuly1970 last updated on 03/May/21 $$\:\:\:\:\:\: \\ $$$$\:\:{prove}\:\:{that}\:: \\ $$$$\:\:\:\:\:\:\:\:\Omega:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{1}−{e}^{−{x}} }{\mathrm{1}+{e}^{\mathrm{2}{x}} }\:.\frac{{dx}}{{x}}\:={ln}\left(\frac{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\mathrm{4}\sqrt{\mathrm{2}\pi}}\:\right) \\ $$$$\:\Theta:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{2}{n}}\right)^{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} } \overset{??}…