Question Number 140028 by mnjuly1970 last updated on 03/May/21 $$\:\:\:{Evaluate}\:::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{P}\::=\underset{{k}=\mathrm{3}} {\overset{\infty} {\prod}}\frac{\left({k}^{\mathrm{3}} +\mathrm{3}{k}\right)^{\mathrm{2}} }{{k}^{\mathrm{6}} −\mathrm{64}}=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…………………….. \\ $$ Terms of Service Privacy…
Question Number 8958 by Sopheak last updated on 07/Nov/16 $${Prove}\:{that}\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+….+\frac{\mathrm{1}}{\mathrm{2009}}=\mathrm{2009}−\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{2}}{\mathrm{3}}+\frac{\mathrm{3}}{\mathrm{4}}+…+\frac{\mathrm{2008}}{\mathrm{2009}}\right) \\ $$ Answered by sou1618 last updated on 07/Nov/16 $$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}…+\frac{\mathrm{1}}{\mathrm{2009}} \\ $$$$=\left(\mathrm{1}−\frac{\mathrm{0}}{\mathrm{1}}\right)+\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right)+\left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{3}}\right)+\left(\mathrm{1}−\frac{\mathrm{3}}{\mathrm{4}}\right)…+\left(\mathrm{1}−\frac{\mathrm{2008}}{\mathrm{2009}}\right) \\ $$$$=\mathrm{2009}−\left(\frac{\mathrm{0}}{\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{2}}{\mathrm{3}}+\frac{\mathrm{3}}{\mathrm{4}}…+\frac{\mathrm{2008}}{\mathrm{2009}}\right) \\…
Question Number 74492 by mathmax by abdo last updated on 24/Nov/19 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 8957 by Sopheak last updated on 07/Nov/16 $$\: \\ $$$${Let}\:{n}\:{be}\:{a}\:{positive}\:{integer}\:{such}\:{that}\:{one}\:{of} \\ $$$${the}\:{roofs}\:{of}\:{the}\:{quadratic}\:{equation}\: \\ $$$$\mathrm{4}{x}^{\mathrm{2}} −\left(\mathrm{4}\sqrt{\mathrm{3}}+\mathrm{4}\right){x}+\sqrt{\mathrm{3}}{n}−\mathrm{24}=\mathrm{0}\:{is}\:{an}\:{integer}\: \\ $$$${Find}\:{the}\:{value}\:{of}\:{n}\: \\ $$$$\: \\ $$ Commented by…
Question Number 140030 by mathdanisur last updated on 03/May/21 Answered by mr W last updated on 03/May/21 Commented by mathdanisur last updated on 03/May/21 $${cool}\:{thanks}\:{sir}…
Question Number 8956 by j.masanja06@gmail.com last updated on 07/Nov/16 $$\mathrm{prove}\:\mathrm{that}; \\ $$$$\mathrm{log}_{\mathrm{ab}} \mathrm{x}=\frac{\mathrm{log}_{\mathrm{a}} \mathrm{x}−\mathrm{log}_{\mathrm{b}} \mathrm{x}}{\mathrm{log}_{\mathrm{a}} \mathrm{x}+\mathrm{log}_{\mathrm{b}} \mathrm{x}} \\ $$ Commented by sou1618 last updated on…
Question Number 8955 by Sopheak last updated on 07/Nov/16 $${Solve}\:{the}\:{equation}\:{below}\: \\ $$$$\sqrt{{x}−\mathrm{2}}=\frac{\mathrm{5}{x}^{\mathrm{2}} −\mathrm{10}{x}+\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{6}{x}−\mathrm{11}} \\ $$ Commented by prakash jain last updated on 08/Nov/16 $${x}−\mathrm{2}={u}…
Question Number 140020 by BHOOPENDRA last updated on 03/May/21 Commented by BHOOPENDRA last updated on 03/May/21 $${find}\:{the}\:{electric}\:{feild}\:{at}\:{point}\:{O} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 74484 by mathmax by abdo last updated on 24/Nov/19 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} +\mathrm{3}}{dx} \\ $$ Commented by mathmax by abdo last updated on…
Question Number 74483 by liki last updated on 24/Nov/19 Commented by liki last updated on 24/Nov/19 $$…\:{sory}\:{mr}\:{w},{i}\:{tried}\:{to}\:{this}\:{qns}\:{according} \\ $$$$\:{to}\:{your}\:{idea}\:{but}\:{i}\:{didn}'{t}\:{get}\:{the}\:{answer}\:{so}\: \\ $$$$\:{plz}\:{assist}\:{me}! \\ $$ Commented by…