Question Number 74395 by mathmax by abdo last updated on 23/Nov/19 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−\mathrm{2}{x}} \left[{e}^{{x}} \right]{dx} \\ $$ Commented by ~blr237~ last updated on 23/Nov/19…
Question Number 8858 by tawakalitu last updated on 01/Nov/16 Answered by sandy_suhendra last updated on 03/Nov/16 $$\mathrm{1st}\:\mathrm{year}\:\mathrm{he}\:\mathrm{got}=\mathrm{U}_{\mathrm{1}} =\mathrm{122},\mathrm{000} \\ $$$$\mathrm{2nd}\:\mathrm{year}\:\mathrm{he}\:\mathrm{got}=\mathrm{122},\mathrm{800} \\ $$$$\mathrm{3rd}\:\mathrm{year}\:\mathrm{he}\:\mathrm{got}=\mathrm{123},\mathrm{600} \\ $$$$. \\…
Question Number 139924 by EDWIN88 last updated on 02/May/21 $$\:\:\:\:\:\:\mathrm{Evaluate}\:\int_{\left(\mathrm{0},\mathrm{1}\right)} ^{\left(\mathrm{1},\mathrm{2}\right)} \:\left[\:\left(\mathrm{x}^{\mathrm{2}} −\mathrm{y}\right)\mathrm{dx}\:+\:\left(\mathrm{y}^{\mathrm{2}} +\mathrm{x}\right)\:\mathrm{dy}\:\right]\: \\ $$$$\mathrm{along}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line}\:\mathrm{from}\:\left(\mathrm{0},\mathrm{1}\right)\:\mathrm{to}\:\left(\mathrm{1},\mathrm{2}\right). \\ $$ Answered by TheSupreme last updated on 02/May/21…
Question Number 8853 by FilupSmith last updated on 01/Nov/16 $$\int_{\mathrm{0}} ^{\:{n}} \left(\left({x}+\mathrm{1}\right)^{\mathrm{1}/{x}} −\mathrm{1}\right){dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 74386 by zaynab last updated on 23/Nov/19 $$\mathrm{z}\left(\mathrm{x}\right)=\mathrm{u}\left(\mathrm{x}\right)+\mathrm{v}\left(\mathrm{x}\right)=\mathrm{Z}\left(\mathrm{K}\right)=\mathrm{U}\left(\mathrm{K}\right)+\mathrm{V}\left(\mathrm{K}\right) \\ $$$$\mathrm{f}\:\mathrm{u}\left(\mathrm{x}\right)=\Sigma\frac{\mathrm{1}}{\mathrm{k}!}\:\frac{\hat {\mathrm{d}k}}{\mathrm{d}\hat {\mathrm{x}k}}\left(\mathrm{x}−\mathrm{x}{o}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 74384 by jagannath19 last updated on 23/Nov/19 Commented by jagannath19 last updated on 23/Nov/19 $${please}\:{explain} \\ $$ Answered by Tanmay chaudhury last updated…
Question Number 8847 by tawakalitu last updated on 31/Oct/16 Commented by Rasheed Soomro last updated on 01/Nov/16 $$\mathrm{Let}\:\mathrm{r}\:\mathrm{be}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{in}\:\mathrm{each}\:\mathrm{case} \\ $$$$\mathrm{N}\:\mathrm{is}\:\mathrm{GCD}\:\mathrm{of}\:\mathrm{1305}−\mathrm{r},\mathrm{4665}−\mathrm{r}\:\mathrm{and}\:\mathrm{6905}−\mathrm{r} \\ $$$$\mathrm{Let}\:\mathrm{1305}−\mathrm{r}=\mathrm{AN},\:\mathrm{4665}−\mathrm{r}=\mathrm{BN}\:\:\mathrm{and}\:\:\mathrm{6905}−\mathrm{r}=\mathrm{CN} \\ $$$$\mathrm{AN}+\mathrm{r}=\mathrm{1305}\:,\:\mathrm{BN}+\mathrm{r}=\mathrm{4665}\:\:\mathrm{and}\:\:\mathrm{CN}+\mathrm{r}=\mathrm{6905} \\…
Question Number 74383 by aliesam last updated on 23/Nov/19 Commented by mathmax by abdo last updated on 23/Nov/19 $${A}\left({x}\right)=\frac{\mathrm{16}\sqrt{{x}−\sqrt{{x}}}−\mathrm{3}\sqrt{\mathrm{2}}{x}−\mathrm{4}\sqrt{\mathrm{2}}}{\mathrm{16}\left({x}−\mathrm{4}\right)^{\mathrm{2}} }{let}\:{use}\:{hospital}\:{theorem}\:\:{let}\:{f}\left({x}\right)=\mathrm{16}\sqrt{{x}−\sqrt{{x}}}\:−\mathrm{3}\sqrt{\mathrm{2}}{x}−\mathrm{4}\sqrt{\mathrm{2}} \\ $$$${and}\:{g}\left({x}\right)=\mathrm{16}\left({x}−\mathrm{4}\right)^{\mathrm{2}} \:\:{we}\:{have}\:{f}^{'} \left({x}\right)=\mathrm{16}\frac{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}}{\mathrm{2}\sqrt{{x}−\sqrt{{x}}}}\:−\mathrm{3}\sqrt{\mathrm{2}} \\…
Question Number 8846 by Rasheed Soomro last updated on 31/Oct/16 $$\mathrm{Let}\:\mathrm{by}\:\left(\mathrm{a}_{\mathrm{1}} ,\mathrm{a}_{\mathrm{2}} ,…\mathrm{a}_{\mathrm{n}} \right)\:\mathrm{we}\:\mathrm{mean}\:\mathrm{LCM} \\ $$$$\mathrm{of}\:\:\mathrm{a}_{\mathrm{1}} ,\mathrm{a}_{\mathrm{2}} ,…\mathrm{a}_{\mathrm{n}} \:,\mathrm{where}\:\mathrm{a}_{\mathrm{i}} \in\mathbb{N}. \\ $$$$\mathrm{Prove}\:\mathrm{or}\:\mathrm{disprove}\:\mathrm{that}\:\left(\:\left(\mathrm{a},\mathrm{b}\right),\left(\mathrm{b},\mathrm{c}\right)\:\:\right)=\left(\mathrm{a},\mathrm{b},\mathrm{c}\right). \\ $$ Answered…
Question Number 8845 by tawakalitu last updated on 31/Oct/16 $$\mathrm{Please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{figure}\:\mathrm{out}\:\mathrm{this}\: \\ $$$$\mathrm{Quantitative}\:\mathrm{reasoning} \\ $$$$\mathrm{How}\:\mathrm{did}\:\mathrm{they}\:\mathrm{get}\:\mathrm{this}\:\mathrm{answers}. \\ $$$$ \\ $$$$\mathrm{2},\mathrm{613},\mathrm{400}\:=\:\mathrm{3} \\ $$$$\mathrm{2},\mathrm{451},\mathrm{100}\:=\:\mathrm{1} \\ $$$$\mathrm{2},\mathrm{541},\mathrm{100}\:=\:\mathrm{2} \\ $$$$\mathrm{3},\mathrm{000},\mathrm{001}\:=\:\mathrm{1} \\…