Question Number 74345 by mathmax by abdo last updated on 22/Nov/19 $$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right)=\int_{{x}+\mathrm{1}} ^{{x}^{\mathrm{2}} +\mathrm{1}} \:\:\:{e}^{−{xt}} {arctan}\left({t}\right){dt} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:{f}\left({x}\right) \\ $$ Commented by mathmax by…
Question Number 8808 by tawakalitu last updated on 28/Oct/16 $$\int_{\frac{\pi}{\mathrm{12}}\:} ^{\frac{\pi}{\mathrm{4}}} \:\mathrm{cos}^{\mathrm{2}} \mathrm{x}\:\:\mathrm{dx} \\ $$ Commented by ridwan balatif last updated on 29/Oct/16 $$\mathrm{remember}:\: \\…
Question Number 74342 by mathmax by abdo last updated on 22/Nov/19 $$\left.\mathrm{1}\right)\:{calculate}\:\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{nx}} \left[{x}\right]{dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{lim}_{{n}\rightarrow+\infty} \:\:{n}\:{U}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{determine}\:{nsture}\:{of}\:{the}\:{serie}\:\Sigma\:{U}_{{n}} \\ $$ Commented by…
Question Number 8807 by tawakalitu last updated on 28/Oct/16 $$\int_{\mathrm{2}} ^{\pi} \left(\mathrm{sec}^{\mathrm{2}} \mathrm{x}\:−\:\mathrm{tan}^{\mathrm{2}} \mathrm{x}\right)\:\mathrm{dx} \\ $$ Answered by ridwan balatif last updated on 29/Oct/16 $$\mathrm{remember}:\:\mathrm{tan}^{\mathrm{2}}…
Question Number 74343 by mathmax by abdo last updated on 22/Nov/19 $${calculatef}\left(\alpha\right)=\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left(\alpha{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx}\:\:\:{with}\:\alpha\:{real}. \\ $$ Commented by mathmax by abdo last updated…
Question Number 8806 by tawakalitu last updated on 28/Oct/16 $$\int_{\frac{\pi}{\mathrm{4}}} ^{\pi} \mathrm{cos2x}\:\mathrm{dx} \\ $$ Commented by ridwan balatif last updated on 29/Oct/16 $$\int_{\frac{\pi}{\mathrm{4}}} ^{\pi} \mathrm{cos2x}\:\mathrm{dx}=\:\frac{\mathrm{1}}{\mathrm{2}}×\left(\mathrm{sin2x}\right)\underset{\frac{\pi}{\mathrm{4}}}…
Question Number 139878 by bramlexs22 last updated on 02/May/21 $$\:\:\:\:\:\:\:\mathrm{I}\left(\alpha\right)\:=\:\underset{\alpha} {\overset{\alpha^{\mathrm{2}} } {\int}}\:\frac{\mathrm{sin}\:\alpha\mathrm{x}}{\mathrm{x}}\:\mathrm{dx}\: \\ $$$$\:\:\:\:\:\:\:\frac{\mathrm{dI}\left(\alpha\right)}{\mathrm{d}\alpha}\:=? \\ $$ Answered by EDWIN88 last updated on 02/May/21 $$\:\:\:\:\:\frac{\mathrm{dI}}{\mathrm{d}\alpha}\:=\:\underset{\alpha}…
Question Number 74338 by malikmasood3535@gmail.com last updated on 22/Nov/19 $$\int{e}^{\mathrm{2}{t}} \mathrm{sin}\:{e}^{{t}} {dt} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 74339 by ajfour last updated on 22/Nov/19 $${x}^{\mathrm{3}} +{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$${Let}\:\:\:{x}=\frac{{pt}+{q}}{{t}+\mathrm{1}} \\ $$$${p}^{\mathrm{3}} {t}^{\mathrm{3}} +\mathrm{3}{p}^{\mathrm{2}} {qt}^{\mathrm{2}} +\mathrm{3}{pq}^{\mathrm{2}} {t}+{q}^{\mathrm{3}} \\ $$$$+{a}\left({t}+\mathrm{1}\right)\left({p}^{\mathrm{2}} {t}^{\mathrm{2}} +\mathrm{2}{pqt}+{q}^{\mathrm{2}}…
Question Number 8801 by arinto27 last updated on 28/Oct/16 $$\mathrm{tent}.\:\mathrm{persamaan}\:\mathrm{garis}\:\mathrm{singung}\:\mathrm{pada}\:\mathrm{lingkaran} \\ $$$$\mathrm{a}.\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{4x}−\mathrm{6y}−\mathrm{7}=\mathrm{0}\:\mathrm{dititik}\:\mathrm{yg}\:\mathrm{berabsis}\:\mathrm{2}. \\ $$$$\mathrm{b}.\:\left(\:\mathrm{x}+\mathrm{2}\:\right)^{\mathrm{2}} \:\left(\mathrm{y}−\mathrm{3}\right)^{\mathrm{2}} \:=\mathrm{16}\:\mathrm{tegak}\:\mathrm{lurus}\:\mathrm{garis}\:\mathrm{x}−\mathrm{2y}+\mathrm{4}=\mathrm{0}. \\ $$ Answered by ridwan balatif last…