Question Number 139851 by mnjuly1970 last updated on 01/May/21 $$\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{prove}\:…… \\ $$$$\:\:\:\:\:\:\Phi=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}}\right)}{\:\sqrt{{x}}}{dx}=\mathrm{4}\:{ln}\left(\frac{{e}}{\mathrm{2}}\right)\:…\checkmark \\ $$ Answered by mindispower last updated on 01/May/21…
Question Number 74308 by Learner-123 last updated on 21/Nov/19 Answered by Tanmay chaudhury last updated on 22/Nov/19 $${P}×\mathrm{2}{R}={I}\alpha \\ $$$$\alpha=\frac{{w}−{w}_{\mathrm{0}} }{{t}} \\ $$$$\frac{{w}−{w}_{\mathrm{0}} }{{t}}=\frac{{P}×\mathrm{2}{R}}{{I}} \\…
Question Number 139840 by mnjuly1970 last updated on 01/May/21 Commented by mnjuly1970 last updated on 01/May/21 $${please}\:{prove}::\Uparrow\Uparrow\Uparrow \\ $$ Answered by mr W last updated…
Question Number 139842 by I want to learn more last updated on 01/May/21 Commented by MJS_new last updated on 01/May/21 $$\mathrm{no}\:\mathrm{real}\:\mathrm{solution} \\ $$ Answered by…
Question Number 74300 by ~blr237~ last updated on 21/Nov/19 $${Let}\:{consider}\:\:\gamma\:\::{I}\rightarrow\mathbb{R}^{\mathrm{2}} \:\:{a}\:{parametric}\:{curve}\: \\ $$$$\left.\mathrm{1}\left.\right){Prove}\:{that}\:{if}\:\:{a}<{b}\:\:{and}\:\:\gamma\left({a}\right)\neq\gamma\left({b}\right)\:{then}\:{there}\:{exist}\:\:{t}_{\mathrm{0}} \in\right]{a},{b}\left[\:\:\right. \\ $$$${such}\:{as}\:\:\gamma'\left({t}_{\mathrm{0}} \right)\:\:{is}\:{colinear}\:{to}\:\gamma\left({b}\right)−\gamma\left({a}\right)\: \\ $$$$\left.\mathrm{2}\right){Show}\:{that}\:{if}\:\:\gamma\:{is}\:{regular}\:{and}\:{the}\:\:{function}\:{f}\::{I}\rightarrow\mathbb{R}\:\:\:\:{t}\rightarrow{f}\left({t}\right)=\mid\mid\gamma\left({t}\right)−{O}\left(\mathrm{0},\mathrm{0}\right)\:\mid\mid\:\:{is}\:{maximal}\:{in}\:{t}_{\mathrm{0}} \in{I} \\ $$$${Then}\:\:\mid{K}_{\gamma} \left({t}_{\mathrm{0}} \right)\mid\geqslant\frac{\mathrm{1}}{{f}\left({t}_{\mathrm{0}} \right)}…
Question Number 139838 by EnterUsername last updated on 01/May/21 $$\mathrm{If}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} \:\mathrm{and}\:{z}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{the}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{a}\:\mathrm{right}-\mathrm{angled}\:\mathrm{isos}- \\ $$$$\mathrm{celes}\:\mathrm{triangle}\:\mathrm{described}\:\mathrm{in}\:\mathrm{counter}\:\mathrm{clock}\:\mathrm{sense}\:\mathrm{and} \\ $$$$\mathrm{right}\:\mathrm{angled}\:\mathrm{at}\:{z}_{\mathrm{3}} ,\:\mathrm{then}\:\left({z}_{\mathrm{1}} −{z}_{\mathrm{2}} \right)^{\mathrm{2}} \:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\: \\ $$$$\left(\mathrm{A}\right)\:\left({z}_{\mathrm{1}} −{z}_{\mathrm{3}} \right)\left({z}_{\mathrm{3}}…
Question Number 74301 by ~blr237~ last updated on 21/Nov/19 $${Prove}\:{that}\:\:{S}=\left\{\left({x},{y},{z}\right)\in\mathbb{R}^{\mathrm{3}} \backslash\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={z}^{\mathrm{2}} \:\right\}\:{is}\:{a}\:{surface}\: \\ $$$${and}\:{find}\:{out}\:{if}\:{possible}\:{the}\:{tangent}\:{plan}\:{in}\:{O}\left(\mathrm{0},\mathrm{0},\mathrm{0}\right). \\ $$ Answered by mind is power last updated…
Question Number 8764 by tawakalitu last updated on 26/Oct/16 $$\left(\mathrm{a}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{given}\:\mathrm{by} \\ $$$$\mathrm{S}_{\mathrm{n}} \:=\:\frac{\mathrm{1}}{\mathrm{1}.\mathrm{3}}\:+\:\frac{\mathrm{1}}{\mathrm{3}.\mathrm{5}}\:+\:\frac{\mathrm{1}}{\mathrm{5}.\mathrm{7}}\:+\:…\:+\:\frac{\mathrm{1}}{\left(\mathrm{2n}\:−\:\mathrm{1}\right)\left(\mathrm{2n}\:+\:\mathrm{1}\right)} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{of}\:\:\:\mathrm{S}_{\mathrm{n}} \:\:\mathrm{as}\:\:\mathrm{n}\:\rightarrow\:\infty \\ $$ Commented by sou1618 last updated on 26/Oct/16…
Question Number 8763 by tawakalitu last updated on 26/Oct/16 $$\int\mathrm{x}\sqrt{\mathrm{3x}\:+\:\mathrm{1}}\:\:\mathrm{dx} \\ $$ Commented by FilupSmith last updated on 26/Oct/16 $${u}=\mathrm{3}{x}+\mathrm{2}\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{3}}\left({u}−\mathrm{2}\right) \\ $$$${du}=\mathrm{3}{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}\int\mathrm{3}{x}\sqrt{\mathrm{3}{x}+\mathrm{2}}{dx} \\…
Question Number 8762 by tawakalitu last updated on 26/Oct/16 $$\int\mathrm{x}^{\mathrm{2}} \left(\mathrm{2x}\:+\:\mathrm{1}\right)^{\mathrm{1}/\mathrm{2}} \:\mathrm{dx} \\ $$ Answered by sou1618 last updated on 26/Oct/16 $${I}=\int{x}^{\mathrm{2}} \sqrt{\mathrm{2}{x}+\mathrm{1}}{dx} \\ $$$${t}=\mathrm{2}{x}+\mathrm{1}…