Question Number 204423 by maqsood last updated on 17/Feb/24 Commented by maqsood last updated on 17/Feb/24 $$\:{plz}\:{solve} \\ $$ Answered by Rasheed.Sindhi last updated on…
Question Number 204433 by emilagazade last updated on 17/Feb/24 Commented by emilagazade last updated on 17/Feb/24 $${find}\:{max}\:{value}\:{for}\:\mid{DB}\mid+\mid{BC}\mid \\ $$ Answered by deleteduser1 last updated on…
Question Number 204418 by peter frank last updated on 17/Feb/24 Commented by mr W last updated on 19/Feb/24 $${y}=\mathrm{2}\left({x}−\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} \\ $$ Answered by mr W…
Question Number 204397 by Abdullahrussell last updated on 16/Feb/24 Answered by MM42 last updated on 16/Feb/24 $$\left({y}−\mathrm{1}\right)\left({y}+\mathrm{1}\right)\left({y}^{\mathrm{2}} +\mathrm{1}\right)={x}\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{1}\right) \\ $$$$\Rightarrow{y}={x}\Rightarrow\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}={y}=−\mathrm{1}\:\checkmark \\…
Question Number 204398 by zadran last updated on 16/Feb/24 $$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 204409 by mr W last updated on 16/Feb/24 $${find}\:\lfloor\int_{\mathrm{0}} ^{\mathrm{2023}} \frac{\mathrm{2}}{{x}+{e}^{{x}} }{dx}\rfloor=? \\ $$ Commented by witcher3 last updated on 16/Feb/24 $$\mathrm{nice}\:\mathrm{problems}\:\mathrm{sir}\:\:\mathrm{Thanx}\:\mathrm{for}\:\mathrm{share}\:\mathrm{it} \\…
Question Number 204410 by Humma last updated on 16/Feb/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 204405 by mathdave last updated on 16/Feb/24 Commented by mathdave last updated on 16/Feb/24 $${pls}\:{someone}\:{should}\:{me}\:{out}\: \\ $$ Answered by mr W last updated…
Question Number 204417 by Frix last updated on 16/Feb/24 $$\mathrm{Solve}\:\mathrm{for}\:{z}\in\mathbb{C} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{e}^{{z}} =\mathrm{ln}\:{z} \\ $$ Answered by mr W last updated on 17/Feb/24…
Question Number 204396 by Thierrybadouana last updated on 15/Feb/24 Answered by Faetmaaa last updated on 27/Feb/24 $$\mathrm{ln}\left(\mathrm{1}+{y}\right)\:\underset{{y}\rightarrow\mathrm{0}} {\sim}\:{y} \\ $$$$\mathrm{sin}\left({y}\right)\:\underset{{y}\rightarrow\mathrm{0}} {\sim}\:{y} \\ $$$$\underset{\begin{matrix}{{x}\rightarrow\mathrm{0}}\\{{x}\neq\mathrm{0}}\end{matrix}} {\mathrm{lim}}\:\frac{\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{sin}^{\mathrm{2}}…