Menu Close

Author: Tinku Tara

e-2-x-dx-

Question Number 8471 by PradipGos. last updated on 12/Oct/16 $$\underset{−\infty} {\overset{\infty} {\int}}{e}^{−\mathrm{2}\mid{x}\mid{d}\underset{} {{x}}} \:\:\:\:\:\:?\:\: \\ $$ Commented by FilupSmith last updated on 12/Oct/16 $$\mathrm{Do}\:\mathrm{you}\:\mathrm{mean}: \\…

Prove-or-disprove-that-2k-1-n-O-k-n-Z-

Question Number 8468 by FilupSmith last updated on 12/Oct/16 $$\mathrm{Prove}\:\mathrm{or}\:\mathrm{disprove}\:\mathrm{that}: \\ $$$$\left(\mathrm{2}{k}+\mathrm{1}\right)^{{n}} \in\mathbb{O}\:\:\:\:\:\:\forall{k},{n}\in\mathbb{Z} \\ $$ Answered by Rasheed Soomro last updated on 12/Oct/16 $$\left(\mathrm{2k}+\mathrm{1}\right)^{\mathrm{n}} =\begin{pmatrix}{\mathrm{n}}\\{\mathrm{0}}\end{pmatrix}\left(\mathrm{2k}\right)^{\mathrm{n}}…

Question-8465

Question Number 8465 by tawakalitu last updated on 12/Oct/16 Answered by sandy_suhendra last updated on 12/Oct/16 $$\left.\mathrm{a}\right)\:\mathrm{let}\:\mathrm{r}=\mathrm{7}\:\mathrm{cm}\:\mathrm{and}\:\mathrm{h}=\mathrm{5}\:\mathrm{cm} \\ $$$$\mathrm{the}\:\mathrm{surface}\:\mathrm{area}=\mathrm{2}×\frac{\mathrm{30}}{\mathrm{360}}\:\pi\mathrm{r}^{\mathrm{2}} +\mathrm{2rh}+\frac{\mathrm{30}}{\mathrm{360}}×\mathrm{2}\pi\mathrm{rh} \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}×\frac{\mathrm{22}}{\mathrm{7}}×\mathrm{7}^{\mathrm{2}} +\mathrm{2}×\mathrm{7}×\mathrm{5}+\frac{\mathrm{1}}{\mathrm{6}}×\frac{\mathrm{22}}{\mathrm{7}}×\mathrm{7}×\mathrm{5} \\ $$$$=\mathrm{25}.\mathrm{67}+\mathrm{70}+\mathrm{18}.\mathrm{33}…

1-3-x-3-9-x-3-2-27-

Question Number 139532 by mathdanisur last updated on 28/Apr/21 $$\frac{\mathrm{1}}{\mathrm{3}}\:−\:\frac{{x}−\mathrm{3}}{\mathrm{9}}\:+\:\frac{\left({x}−\mathrm{3}\right)^{\mathrm{2}} }{\mathrm{27}}\:+\:…\:=? \\ $$ Commented by mr W last updated on 28/Apr/21 $$=\frac{\mathrm{1}}{{x}} \\ $$ Commented…

advanced-calculus-prove-that-lim-n-1-n-1-n-n-1-n-d-n-dx-n-ln-x-x-x-n-euler-mascheroni-constant-

Question Number 139530 by mnjuly1970 last updated on 28/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:…….{advanced}\:\:{calculus}…… \\ $$$$\:{prove}\:\:{that}:: \\ $$$$\:\:\:{lim}_{{n}\rightarrow\infty} \left\{\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {n}^{{n}+\mathrm{1}} }{{n}!}\:\frac{{d}^{\:{n}} }{{dx}^{{n}} }\left(\frac{{ln}\left({x}\right)}{{x}}\right)\mid_{{x}={n}} \right\}=\gamma \\ $$$$\:\gamma\::\:\:\:{euler}\:−{mascheroni}\:{constant} \\ $$$$ \\…