Question Number 73964 by arkanmath7@gmail.com last updated on 17/Nov/19 $${if}\:{Im}\left({f}\:'\left({z}\right)\right)\:=\mathrm{6}{x}\left(\mathrm{2}{y}−\mathrm{1}\right)\:{and}\: \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{3}−\mathrm{2}{i}\:,\:{f}\left(\mathrm{1}\right)=\mathrm{6}−\mathrm{5}{i}\: \\ $$$${find}\:{f}\left(\mathrm{1}+{i}\right)? \\ $$ Answered by mind is power last updated on 17/Nov/19…
Question Number 139502 by bemath last updated on 28/Apr/21 $$\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{8x}}\:\leqslant\:\mathrm{24}−\left(\mathrm{x}+\mathrm{2}\right)\left(\mathrm{x}+\mathrm{6}\right) \\ $$$$ \\ $$ Answered by TheSupreme last updated on 28/Apr/21 $${domain}:\:{x}<−\mathrm{8}\:\vee\:{x}>\mathrm{0} \\ $$$$\begin{cases}{\mathrm{24}−\left({x}+\mathrm{2}\right)\left({x}+\mathrm{6}\right)>\mathrm{0}\rightarrow\mathrm{12}−{x}^{\mathrm{2}}…
Question Number 8427 by tawakalitu last updated on 10/Oct/16 $$\mathrm{In}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{PQRST}\:\mathrm{center}\:\mathrm{O},\:\mathrm{PQRS}\:\mathrm{is}\:\mathrm{a}\: \\ $$$$\mathrm{cyclic}\:\mathrm{quadrilateral}\:\mathrm{and}\:\mathrm{T}\:\mathrm{is}\:\mathrm{on}\:\mathrm{the}\:\mathrm{circle}. \\ $$$$\mathrm{QS}\:\mathrm{is}\:\mathrm{a}\:\mathrm{diameter}\:\mathrm{and}\:\mathrm{angle}\:\mathrm{QOR}\:\mathrm{is}\:\mathrm{86}° \\ $$$$\mathrm{if}\:\mathrm{PTQ}\:\mathrm{is}\:\mathrm{28}°\:.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{angles}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{quadrilateral}\:\mathrm{PQRS}. \\ $$ Answered by sandy_suhendra last updated…
Question Number 8421 by uchechukwu okorie favour last updated on 24/Oct/16 $${if}\:{x}=\frac{{a}\left(\mathrm{1}−{r}^{{n}} \right)}{\mathrm{1}−{r}};\:{make}\:{r}\:{the}\: \\ $$$${subject}\:{of}\:{the}\:{formulae} \\ $$ Commented by FilupSmith last updated on 11/Oct/16 $${x}−{xr}={a}−{ar}^{{n}}…
Question Number 139489 by Rasheed.Sindhi last updated on 28/Apr/21 $$\:^{\bullet} \boldsymbol{{I}}\:\boldsymbol{{am}}\:\:\boldsymbol{{uncomcofortable}}\:\:\boldsymbol{{and}}\:\boldsymbol{{so}}\: \\ $$$$\boldsymbol{{is}}\:\:\boldsymbol{{my}}\:\boldsymbol{{writer}}. \\ $$$$ \\ $$$$\:^{\bullet} \boldsymbol{{My}}\:\boldsymbol{{writer}}\:\boldsymbol{{sometimes}}\:\boldsymbol{{regrets}} \\ $$$$\:\boldsymbol{{after}}\:\boldsymbol{{writing}}\:\boldsymbol{{me}}\:\boldsymbol{{and}}\:\:\boldsymbol{{wants}} \\ $$$$\:\boldsymbol{{to}}\:\boldsymbol{{delete}}\:\boldsymbol{{me}}. \\ $$$$ \\…
Question Number 8419 by arinto27 last updated on 10/Oct/16 $$\left.\mathrm{1}\right)\:\mathrm{diket}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{2x}−\mathrm{13},\:\mathrm{g}^{−\mathrm{1}} \left(\mathrm{x}\right)=\frac{\mathrm{x}+\mathrm{4}}{\mathrm{5}}\:\mathrm{dan}\:\mathrm{h}^{−\mathrm{1}} \left(\mathrm{x}\right)=\mathrm{5x}+\mathrm{7} \\ $$$$\:\:\:\:\:\:\mathrm{nilai}\:\left(\mathrm{f}\:\mathrm{o}\:\left(\:\mathrm{g}\:\mathrm{o}\:\mathrm{h}\:\right)\right)^{−\mathrm{1}} \left(\mathrm{3}\right)=…? \\ $$$$\left.\mathrm{2}\right)\mathrm{diket}\:\mathrm{f}\left(\mathrm{x}\right)^{−\mathrm{1}} =\mathrm{4x}+\mathrm{5},\:\mathrm{g}\left(\mathrm{x}\right)=\frac{\mathrm{x}+\mathrm{4}}{\mathrm{5}}\:\mathrm{dan}\:\mathrm{h}^{−\mathrm{1}} \left(\mathrm{x}\right)=\mathrm{x}−\mathrm{7} \\ $$$$\:\:\:\:\mathrm{nilai}\:\left(\:\mathrm{f}\:\mathrm{o}\:\mathrm{g}\:\mathrm{o}\:\mathrm{h}\:\right)^{−\mathrm{1}} \left(−\mathrm{2}\right)=….?? \\ $$$$\left.\mathrm{3}\right)\:\mathrm{jika}\:\mathrm{diket}\:\mathrm{invers}\:\mathrm{dari}\:\mathrm{fungsi}\:\mathrm{f}\:\mathrm{adalah}\:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)=\mathrm{3x}^{\mathrm{2}}…
Question Number 139490 by EnterUsername last updated on 27/Apr/21 $$\mathrm{If}\:{w}\neq\mathrm{1}\:\mathrm{is}\:\mathrm{a}\:\mathrm{cube}\:\mathrm{root}\:\mathrm{of}\:\mathrm{unity},\:\mathrm{x}={a}+{b},\:\mathrm{y}={aw}+{bw}^{\mathrm{2}} \\ $$$$\mathrm{and}\:{z}={aw}^{\mathrm{2}} +{bw},\:\mathrm{then}\:\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} +{z}^{\mathrm{3}} =? \\ $$ Answered by Rasheed.Sindhi last updated on 27/Apr/21…
Question Number 8416 by Chantria last updated on 10/Oct/16 $$\boldsymbol{{Solve}}\:\boldsymbol{{equation}}\: \\ $$$$\:\mathrm{1}.\:\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} =\boldsymbol{{x}}+\boldsymbol{{y}}+\mathrm{8}\:\:\:\:\:\:\:\left({x};{y}\:{be}\:{positive}\right) \\ $$$$\:\mathrm{2}.\:\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{2}\sqrt{\boldsymbol{{x}}}+\mathrm{1}=\mathrm{0} \\ $$$$ \\ $$ Commented by Rasheed Soomro…
Question Number 139484 by ZiYangLee last updated on 27/Apr/21 $$\mathrm{If}\:\alpha,\beta\:\mathrm{and}\:\gamma\:\mathrm{are}\:\mathrm{the}\:\mathrm{interior}\:\mathrm{angles}\:\mathrm{of}\:\mathrm{a}\: \\ $$$$\mathrm{triangle},\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\begin{vmatrix}{\mathrm{tan}\:\alpha}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{tan}\:\beta}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{tan}\:\gamma}\end{vmatrix} \\ $$ Answered by MJS_new last updated on 27/Apr/21 $$\mathrm{2} \\…
Question Number 73948 by Hardy lanes last updated on 17/Nov/19 $${lim}\:\:\:\left(\frac{\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}{x}}{{x}}\right) \\ $$$${x}\rightarrow\mathrm{0} \\ $$ Commented by mathmax by abdo last updated on 17/Nov/19…